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Due to its enhanced mechanical qualities and environmental sustainability, waste rubber in concrete materials has attracted 

more attention. In this investigation, a numerical model was suggested to clarify the effect of rubber tiering on strengths. 

Given the variety of raw materials available then, changing how concrete works to fit modern development is hard. The 

standard mixing ratio test method could be replaced with the artificial neural optimization model, and the concrete 

performance prediction could be realized accurately and quickly. This will allow for the more efficient use of a wide range 

of complex novel raw materials and improve the concrete mix ratio design method. Evaluating the workability, compressive, 

splitting, tensile, and bending strengths include replacing rubber waste particles with 10%, 20%, and 30% of aggregates by 

volume. Data was collected from the literature, and the results were analyzed using an Extreme Learning Machine (ELM) 

and Multiple Linear Regression (MLR) to accurately evaluate rubberized concrete beams' performance with micro-

reinforcement. The results revealed that using rubber waste particles leads to a decline in the weight of the concrete sample 

and a level of Compressive Strength (CS) compatible with a load-bearing wall. The regression analysis revealed a high 

correlation between the independent and dependent variables, with R2 values ranging from 0.932 to 0.983 in both the 

training and testing phases. However, there was higher variability in the test phase, with RSD values ranging from 6.23% to 

9.92%, compared to the training phase, with RSD values ranging from 5.12% to 6.77%. The study demonstrated the 

potential to use waste rubber in concrete composites and the importance of considering the training and test phase results 

for accurate predictions. Regarding accuracy, both models have relatively high R2 values (0.954 for ELM and 0.943 for 

MLR), indicating a strong correlation between the independent and dependent variables. However, ELM has a slightly lower 

RSD (6.88%) than MLR (5.45%). Regarding Mean Relative Error (MRE), both models have similar results (5.12% for ELM 

and 5.87% for MLR). In terms of time, the ELM model has a much faster running time of 2.45 seconds compared to the 

MLR model, which takes 28.011 seconds. ELM can make predictions faster than MLR, which could be significant in real-

time applications.  
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1|Introduction  

Modifying building materials to achieve the desired features, sustainability, and economy is a major concern 

for the sector. Waste materials, such as fly ash, glass fibers, and tire rubber, among others, are always preferred 

for construction because they are affordable and reduce disposal issues. Concrete is the most common 

building material, but it uses the most natural resources. Water, cement, and aggregate [1]-[3] hold it together. 

Unless a replacement can be discovered, using traditional materials in concrete will exhaust the resources. 

Due to its properties, rubber can be a suitable replacement for good aggregates in concrete structures. Vehicle 

use increased in tandem with global population growth. As a consequence, the annual production of rubber 

reached its highest level. As a result, burning it or dumping it in landfills is the quickest and cheapest way to 

dispose of used tire rubber [4]. However, burning results in global warming, toxic emissions, and smoke 

pollution, all of which are dangerous to human health and other ecosystems [5]-[7]. If used rubber tires are 

disposed of in sanitary landfills, additional problems arise, such as contamination and environmental risks. 

Waste tires aren't allowed to be thrown away in some countries due to their weight, their tendency to flow on 

the ground, and other things that could be harmful. For this reason, waste rubber recycling has been promoted 

worldwide, regardless of environmental or economic concerns [8]. Using it as an additive in concrete-based 

products is the most efficient way to dispose of these non-decomposing rubber materials. Rubber is often 

used in engineering structures since it has several benefits and has a massive effect on the durability and 

strength characteristics of reinforced concrete structures. It can be used to build steel-concrete composite 

beams, rigid pavements, airport pavements, and earthquake-resistant structures. Using waste rubber in the 

mix enhances Concrete's energy absorption, strain capacity, crack resistance for microcracking, impact 

resistance, and fracture toughness. Rubber can be added to the concrete to decrease its tendency to fracture 

easily. Rubberized concrete shows plastic failure modes and ductile behavior. Crumb rubber provided better 

blast and explosion resistance. Unlike normal concrete, rubberized concrete has an appealing look, a usable 

texture, and a lower unit weight [9]-[11]. The behavior of concrete incorporating rubber waste has been the 

subject of several studies in the past. For example, Khatib and Bayomy [12] studied how the slump of rubber 

concrete changes and found that the slump decreases with an increasing percentage of rubber. According to 

another report, there was no slump when the rubber content exceeded 40%. More mixtures with fine rubber 

particles were workable than coarser ones [12]. According to Fedroff et al. [13], adding rubber particles 

increased air volume in the mix [14]. Compared to smaller rubber aggregates and coarse aggregates, the loss 

of CS was less. Rubber has a high absorption capacity; therefore, it failed ductility when rubberized concrete 

was pressed [14]. Blastomeres, other materials, and 3.5% to 5% of rubber were used by Hernandez-Olivares 

et al. [15]. They performed many tests and concluded that the CS of rubber plastic was 23 MPa, compared to 

36 MPa for their control mixture [15]. Shu and Huang [16] concluded that rubber concrete has weaker 

properties overall than normal concrete. Based on the results, rubber particles of larger sizes in concrete 

mixtures had lower strength than smaller ones [17]-[19].  There is a huge potential for waste rubber reuse and 

recycling in developing countries due to the enormous amount of waste tire rubber. Reduced waste and less 

environmental deterioration arise from reusing, recycling, or handcrafting rubber tires into new products [20]. 

Two different technologies were obtained for rubber aggregate from the waste tire (mechanical grinding and 

cryogenic grinding) [21]. The high ductility, crack resistance, and strong energy dissipation capacity have been 

achieved by introducing a certain amount of crumb rubber in normal concrete, known as crumb rubber 

concrete [22]. The Compressive Strength (CS) and density of rubberized concrete are affected by the rubber 

content and w/c ratio [23]. The bonding strength of rubber aggregates can be increased by treating it with 

carboxylic acids and styrene-butadiene copolymer latex admixtures [24], [25]. The CS of cementitious 

materials has recently been forecast by different studies using extrapolation methods, Artificial Neural 

Networks (ANNs), compressible packing models, genetic algorithms, regression analysis methods, and fuzzy 

logic [26], [27]. According to its capacity to learn from output and input connections in complex issues, the 

ANN, among these approaches, seems to be a relevant and efficient approach [28]. In addition, ANN may 

be applied to map the mechanical properties of concrete, including its slumping, filling capacity, segregation, 

and CS and tensile strengths [26]-[28]. According to studies published in recent years, ANNs can be applied 
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to solve engineering problems. However, the data required [29] to evaluate the CS of concrete may be difficult 

to find or insufficient. These studies examined self-compacting [30]-[33], high performance [34]-[40], sulfate 

resistance [41], [42], lightweight [43]-[45], recycled aggregate [34], [46], [47], cyclic behavior of concretes [48] 

and waste material [41], [49], [50] issues. In 2021, more than 10,150 papers were published just in the field of 

materials engineering. This shows that machine learning and artificial intelligence are becoming increasingly 

popular. Faridehmihr et al. [51] investigated the use of waste materials in alkali-activated materials, including 

waste ceramic powder, palm oil, fly ash, and granulated blast-furnace slag. A meta-heuristic Krill-Herd 

algorithm and an ANN can be used to accurately predict properties like mechanical resistance [52]-[58]. In 

their investigation of the ternary blended alkali-activated mortars' cradle-to-gate life-cycle evaluation, 

Faridehmihr et al. [51] displayed the efficacy of ANNs. Mhaya et al. [59] tested the efficiency of several 

modified rubberized concretes by putting them in harsh environments. The final mechanical features were 

predicted using ANN and particle swarm optimization (PSO). In similar research, Golafshani and Behnood 

[60] used a multi-objective multi-verse optimizer with an ANN (PSO) and ANN (MOMVO). Alabduljabbar 

et al. [61] used a method similar to Sadowski et al. [62] to figure out the mechanical features of a large empirical 

study on the sustainability of using waste sawdust and complementary cementitious material to make high-

efficiency, cement-free lightweight concrete. Ray et al. [63] used an ANN to examine how adding condensate 

milk and fine glass aggregate can fiber (Sn) changed the CS and splitting tensile strengths at three curing ages. 

The findings indicated that the accuracy was very good. It is obvious that by using machine learning 

technology, concrete value predictions may be made effectively [64], [65]. Fig. 1 shows the Rubber tier waste 

recycling. 

Fig. 1. Rubber-tier waste recycling. 

Several works have examined how to make numerical models showing rubberised concrete's behaviour [66]-

[68]. Topçu and Sardemir [69] used ANNs to predict rubberized concrete density and usage. Using the same 

technique, Bachir et al. [70] estimated the CS of rubberized concrete. To measure the CS of rubberized 

concrete, Jalal et al. [71] and Jalal and Jalal [72] highlighted the abilities of genetic programming, support 

vector machines, adaptive fuzzy neurosis inference systems, and multivariable non-linear and linear 

regression. Cheng and Cao [73] applied similar methods to measure the TS of rubberized concrete. Habib 

and Yildirimused [74] multivariable linear regression to estimate rubberised concrete's dynamic features. As a 

result, multivariable regression analysis, which is easy to use, deals with a few independent parameters whose 

values are to measure a single outcome variable [75]. For estimating rubberized concrete characteristics, a 

neural network is more precise but more intricate and rarely used by practicing engineers [74].  

The primary indicator, the CS of SCRC, which is commonly used to assess strength, generally decreases as 

the rubber content of SCRC increases. Building codes like Eurocode 2 [76] or ACI Committee 209 have no 

expressions for predicting the CS of rubberized concrete, especially SCRC. This demonstrates that a concrete 

reference mixture devoid of crumb rubber particles is always required. As a result, one of several machine 

learning methods was used in their article to attempt to forecast the CS of SCRC. Various fields, especially 

process control and optimization, medicine, engineering, and economics, have successfully used metaheuristic 

methods, especially neural networks [76]-[80]. They have also been used to imitate how the material behaves 

when it is fresh or solid [62], [81]-[84], though this is much less true in concrete that has been strengthened 

with rubber [85]-[87]. In addition to ANN models, the CS of concrete has also been estimated using Random 
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Forest and K-Nearest Neighbor (KNN), two other methods for machine learning [89]. KNN uses the 

distances of the k-nearest data points to assign unknown data values. 

On the other hand, the ensemble learning method RF produces many decision trees during training. RF gives 

unknown data values depending on the mean forecast of the individual trees. With 104 experimental data 

points, Ahmadi-Nedushan [90] used a KNN to forecast the CS, while Chopra et al. [91] used an RF model 

and 49 data points to estimate the CS. Fig. 2 shows the process of converting waste rubber to graphene, which 

involves heating the rubber to high temperatures in an oxygen-free environment, resulting in carbon atoms 

rearranging into graphene sheets. This process is known as thermal decomposition or pyrolysis. The graphene 

sheets are then collected and purified for use in various applications. 

Fig. 2. Converting waste rubber to graphene. 

 

1.1 | Problem Statement-Objective of Study 

Rubberized concrete is an eco-friendly material with superior vibration behavior and energy dissipation 

capabilities; therefore, the research on it has expanded considerably over the last decade. Despite this, a 

number of investigations have shown that the presence of rubber in a material reduces its mechanical 

properties. These models are more complex than multivariable regression models and take more 

computational effort in engineering practice. In addition, the bulk of research has concentrated only on the 

CS of rubberized concrete and has seldom looked into other characteristics and sample sizes. This project 

seeks to produce simple and accurate multivariable linear regression models for rubberized concrete and an 

Extreme Learning Machine (ELM) that can be applied to various rubberized concrete compositions and 

sample sizes. The research aimed to explore the use of scrap rubber in concrete composites and its influence 

on the composites' strengths. Data was acquired from the literature and analyzed using MLR and ELM to 

assess the performance of rubberized concrete beams with micro-reinforcement. 
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1.2 | Significance of Study 

This study's significance lies in exploring the potential of waste rubber in concrete composites as a sustainable 

building material. The numerical model proposed helps gain insights into the effect of rubber tires on concrete 

strengths. Using intelligent optimization algorithms to design the concrete mix ratio and predict concrete 

performance helps efficiently use diverse raw materials. The study's results showed the compatibility of rubber 

waste particles in reducing the weight of the concrete sample while maintaining a level of CS. The comparison 

of MLR and ELM models showed that both models have high accuracy, but ELM has a faster running time, 

which could be significant in real-time applications. Fig. 3 shows the application of rubber bricks. Fig. 4 shows 

the shredding line: the process starts with removing the steel wire from the tire, followed by shredding the 

tire into smaller pieces. The shredded rubber is then processed further to remove impurities and produce 

rubber granules or powders for various applications. The tire shredding line improves the efficiency and 

sustainability of the tire recycling process. 

Fig. 3. Rubber tier bricks. 

 

2 | Methodology 

2.1 | Materials 

This study prepared a concrete mix by replacing fine aggregates with different percentages of waste rubber 

particles: 10%, 20%, and 30%. The workability, TS, CS, and Bending Strengths (BSs) s of the concrete were 

evaluated and compared with traditional concrete. The experiments were conducted following the standard 

procedures, and the results were analyzed using MLR and ELM models to evaluate the efficiency of 

rubberized concrete beams with micro-reinforcement. The study investigated the potential of using waste 

rubber in concrete composites and the importance of considering the results for accurate predictions. The 

mix proportions of rubber fiber concrete used in this study were cement (150 kg/M3), coarse aggregate (600 

kg/M3), rubber particles (A1 (0.6 kg/m3 ), A2 (0.9 kg/m3 ), A3 (1.5 kg/m3 )), fine aggregate (450 kg/M3), fly 

ash (10, 20, or 40) orders as per study requirement Polypropylene fiber (0.75 kg/M3), admixture (1.5%) of the 

total cement weight. 

Table 1. A mix ratio of rubber fiber concrete was used in the study. 

 

 

 

 

 

Material Amount (kg/m3) 

Cement 150 
Coarse aggregate 600 
Rubber particles 0.6, 0.9, 1.5 
Fine aggregate 450 
Fly ash 10, 20, or 40 (as per study requirement) 
Polypropylene fiber 0.75 
Admixture 1.5% of total cement weight 
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Fig. 4. Rubber tier shredding line. 

 

2.2 | ELM Development 

ELM is a functional programming language that compiles JavaScript and is used for building web applications, 

as reported by Huang et al. [92], [93]. It was created by Evan Czaplicki in 2012 as part of his thesis project at 

Harvard University. ELM is designed to make creating reliable and maintainable web applications easier by 

providing a strong type system, a clear separation of concerns, and a focus on immutability. One of the main 

benefits of using ELM for web development is its focus on functional programming. This approach can make 

it easier to reason about the behavior of your application and to write code that is easier to test and maintain. 

ELM's type system is another key feature that makes it popular for web development [93]-[96]. The type 

system helps catch errors at compile time rather than at runtime. This means many bugs can be caught early 

in development, reducing debugging time. ELM also provides a clear separation of concerns through its 

architecture pattern, the ELM architecture. The ELM architecture promotes separation between the model, 

the view, and the update function, making it easier to reason about the behavior of your application and to 

write code that is easier to maintain and modify. 

Regarding development, ELM provides a range of tools and resources to make it easier to build web 

applications. For example, ELM has a package manager, which makes it easy to use external libraries and 

dependencies in your ELM projects. There is also an interactive environment called the ELM REPL, which 

allows you to experiment with ELM code and learn about the language's syntax. ELM is a popular choice for 

web development, particularly for those interested in functional programming who want to build reliable and 

maintainable web applications. Its focus on immutability, strong type system, and clear separation of concerns 

make it an attractive option for developers who want to build high-quality web applications [95]. 

where 𝑐𝑖 = [𝑐𝑖𝑖, 𝑐𝑖2 … , 𝑐𝑖+1]
𝑇
 is the weight vector that is randomly built to connect the 𝑖 th hidden nodes of the 

hidden layer and input nodes, 𝑄 = [𝑄𝑎, 𝑄𝑖𝑎, … , 𝑄𝑖𝑚]𝑇 is the output weight vector connecting hidden nodes 

and output nodes, and 𝑑𝑖 is the bias of the 𝑖 th hidden node. 𝑥𝑝, 𝑐𝑖 denotes the inner product of 𝑥𝑗 and 𝑐𝑖. The 

output of the ith hidden node with respect to the input sample 𝑥𝑗 is 𝛺(𝑥𝑗, 𝑐𝑖 + 𝑑𝑗)[95]. 

where 

∑ 

M

i=1

Q,Ω(xj) = ∑ 

M

i=1

Q,Ω(xj, ci + di) = τi, j = 1,… ,N, (1) 

KQ = T, (2) 
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𝐾 is termed the hidden layer output matrix of the single-layer feedforward NN. The ith column of 𝐾 shows 

the 𝑖 th node in the hidden layer in terms of inputs 𝑥1, 𝑥2, … , 𝑥ℕ∗𝛺(𝑥1, 𝑐1 + 𝑑1) is named the hidden layer feature 

mapping [93]. 

Eq. (3) corresponds to the reduction of the cost function. 

According to the theories underlying the ELM, almost all non-linear functions similar to those applied in 

feature mappings could be used to provide universal approximation in the ELM [98]. 

 

Table 2. Steps involved in the preparation of rubber fiber concrete. 

 

 

 

 

 

 

 

 

2.3 | MLR Development 

In engineering, MLR is commonly used to predict the response of a system based on the values of multiple 

input variables. For example, in the field of mechanical engineering, MLR can be used to predict the strength 

of materials based on their chemical composition and manufacturing processes. In civil engineering, MLR 

can be used to estimate the CS of concrete based on its ingredients and curing time. In electrical engineering, 

MLR could be applied to forecast the performance of electrical devices based on their design parameters. In 

general, MLR is a useful tool for solving linear problems in engineering where there is a relationship between 

multiple independent variables and a dependent variable that can be modeled using a linear equation (Fig. 5). 

 

 

K  = [ 
  
 
 Ω(x1, c1 + d1) ⋯ Ω(x1, cM + dM)

⋮ ⋱ ⋮
Ω(xN, c1 + d1) ⋯ Ω(xN, cM + dM)

] 
  
 
 

NWM

,

Q  =
[ 
  
  
  
 
 Q1
Q2
⋮

QM

] 
  
  
  
 
 

M×1

  and T =
[ 
  
  
  
 t1
t2
⋮

tN
] 
  
  
  
 

N×1

.

 (3) 

∥K(c1, … , cN, d1, … , dN)Q − T∥ = min
c,b,4

 ∥ K(c1, … , cN, d1, … , dN)Q − T∥. (4) 

E = ∑ 

N

j=1

( 
  
  
 

∑ 

M

i=1

 QΩ(xi, ci, di) − τj) 
  
  
 2

. (5) 

∥
∥
∥
KQ̂ − T |=

∥
∥
∥
KKT − T ∣= min

Q
 
∥
∥
∥

KQ − T ∥ .  (6) 

Step Process 

1 Mixing of dry ingredients: the fine aggregate, cement, coarse aggregate, fly ash, and rubber particles 
were mixed in a dry state in a laboratory mixer. 

2 Addition of admixture: the polycarboxylic acid superplasticizer was added to the mixture and 
thoroughly mixed for 1 minute. 

3 Addition of water: water was added to the mixture, and the mixing was continued for another 5 
minutes. 

4 Addition of fiber: polypropylene fiber was added to the mixture, and the mixing was continued for a 
final 1 minute. 

5 Molding of specimens: the prepared mixture was then cast into cube, cylinder, and beam specimens 
of standard dimensions and cured under laboratory conditions. 

6 Testing of specimens: After curing, the specimens were tested for CS, TS, and BSs per relevant 
standards. 
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Fig. 5. MLR flowchart [99].  

 

2.4 | Interpretation of the Test Results Using Statistical 

The mechanical functions of TS (𝑓𝑠𝑡), CS (𝑓𝑐), impact energy (𝐸𝐹), and flexural strength (𝑓f) were assessed 

using steel fiber (0, 0.75, 1.15, and 1.55%) and Multiple Linear Regression (MLR) analysis on fly ash (0 and 

40%). The regression analysis's equation is expressed as 

𝑌 is the dependent variable that needs to be identified, 𝑋𝑖 are the independent variables; 𝛽𝑖 is the parameters; 

and 𝜀 are the errors. Final impact energy (𝐸𝐹), flexural strength (𝑓𝑓), CS (𝑓𝑐), and split tensile strength (𝑓𝑠𝑡) 

were considered to be the dependent parameters to be defined from the known independent parameters (% 

of fly ash, 𝑋1 and percentage of steel fibers, 𝑋2) added to the mix. Based on Eq. (2), statistical equations based 

on the experimental findings at 28 and 56 days were suggested. The regression parameters for the respective 

strength or energy at 28 or 56 days are symbolized by 𝛽𝑖 in the equations below. It is suggested that the 

equations be used to predict the split tensile strength (𝑓𝑠𝑡), CS (𝑓𝑐), impact energy (𝐸𝐹), and flexural strength 

(𝑓𝑓) at 28 days. 

The concrete used as the control had a CS of 𝛽(𝑐−28)0 = 98.53%; 𝛽(𝑐−28)1 = −0.131; 𝛽(𝑐−28)2 = + 4.295. 

The concrete used as the control had a split tensile strength of 𝛽(𝑡.28)0 = 101.42%; 𝛽(𝑡−28)1 = −0.013; 𝛽(𝑐−28)2 = + 

0.860. 

The concrete used as the control had a flexural strength of 𝛽(𝑓.28)0 = 100.81%; 𝛽(𝑓.28)1 = −0.028; 𝛽(𝑓.28)2 =

+1.584. 

Y = β0 + β1X1 + β2X2 + ε. (7) 

fc(MPa) = β(c−28)n + β(c−2))1X1 + β(c−28)2X2, R
2 = 0.971. (8) 

fsr(MPa) = β(−28)0 + β(t−28)1X1 + β(t−28)2X2, R
2 = 0.937. (9) 

ff(MPa) = β(γ−28,0 + β(f−2)∣1X1 + β(J−28)2X2, R
2 = 0.955. (10) 

EF(kN − mm) = β(E−28)0 + β(E−28)1X1 + β(E−28)2X2, R
2 = 0.964. (11) 
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The concrete used as the control had a final impact on the energy of 𝛽(𝐸−28)0 = 111.62%; 𝛽(𝐸−28)1 =

−14.287; 𝛽(𝐸−28)2 = + 945.35. 

Based on the following equations, at 56 days, split tensile strength (𝑓𝑠𝑡), CS (𝑓𝑐), impact energy (EF), and 

flexural strength (ff) can all be predicted: 

The concrete used as the control had a CS of 𝛽(𝑐−56)0 = 100.82%; 𝛽(𝑐−56)1 = −0.064; 𝛽(𝑐−56)2 = + 5.698. 

The concrete used as the control had a split tensile strength of 𝛽(𝑡−56)0 = 97.84%; 𝛽(𝑡−56)1 = −0.013; 𝛽(𝑐−56)2 = + 

0.864. 

The concrete used as the control had a flexural strength of 𝛽(𝑓556)0 = 110.44%; 𝛽(𝑓.56)1 = −0.030; 𝛽(𝑓.56)2 =

+1.646. 

The concrete used as the control had a final impact on the energy of 𝛽(𝐸−56)0 = 103.79%; 𝛽(𝐸−56)1 =

−16.378; 𝛽(𝐸−56)2 = + 1130.757. 

Based on a 95% confidence interval, Eqs. (3)-(10) are constructed. This shows that the error is very minimal 

and may be neglected because the regression coefficient (𝑅2) varies from 0.9 to 1 [100]. 

where 

− 𝑦 : response, 𝑥1, … , 𝑥𝑘 : predictors. 

− 𝛽0, 𝛽1, … , 𝛽𝑘 : coefficients. 

𝜖 : error term. 

Remark: This is the same formula for �̂� = (�̂�0, �̂�1)
′
 in simple linear regression. To show it, consider the 

following toy data set of three points: (0,1), (1,0), (2,2) used before. The new formula gives that 

fc(MPa) = β(c−56)0 + β(c−56)1X1 + β(c−56)2X2, R
2 = 0.974. (12) 

fst(MPa) = β(t−56)0 + β(t−56)1X1 + β(t−56)2X2, R
2 = 0.950. (13) 

ff(MPa) = βg−56j0 + β(f−56)1X1 + β(f−56)2X2, R
2 = 0.939. (14) 

EF(kN − mm) = β(E−56)) + β(E−56)]X1 + β(E−56)2X2, R
2 = 0.981. (15) 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘 + 𝜖, (16) 

y = [

y1
y2
⋮
yn

] , X = [

1 x11 x12 ⋯ x1k
1 x21 x22 ⋯ x2k
⋮ ⋮ ⋮ ⋱ ⋮
1 xn1 xn2 ⋯ xnk

] , β = [

β0
β1
⋮
βk

] , ϵ = [

ϵ1
ϵ2
⋮
ϵn

]. (17) 

β̂  = (X ′X)−1X ′y

 = ([
1 1 1
0 1 2

] [
1 0
1 1
1 2

])

−1

[1 1 1
0 1 2

] [
1
0
2
]

 = [3 3
3 5

]
−1

[3
4
]

 = [0.5
0.5

] .

 (18) 
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3 | Result and Discussion 

This study prepared rubber fiber concrete by replacing fine aggregates with different percentages of waste 

rubber particles: 10%, 20%, and 30%. The bending, TS, and CSs of the concrete were evaluated. The mixture 

ratio of the rubber fiber concrete used in this work was 150 kg/m3 of fly ash, 450 kg/m3 of cement, 600 

kg/m3 of fine aggregate, 800 kg/m3 of coarse aggregate, 0.6, 0.9, 1.5 of rubber particles, 0.75 kg/m3 of 

polypropylene fiber, and 1.5% of the total cement weight of polycarboxylic acid superplasticizer. The 

preparation of rubber fiber concrete involved mixing dry ingredients, including cement, coarse aggregate, fly 

ash, fine aggregate, and rubber particles, in a laboratory mixer. The polycarboxylic acid superplasticizer was 

then added and mixed for 1 minute, followed by the addition of water and mixing for another 5 minutes. 

3.1 | Bending Strength 

Following Table 3, the analysis of the given information highlights the importance of considering different 

parameters while using rubber tires in concrete. The rubber tire ratios play a crucial role in determining the 

strength of the concrete. Among the three ratios given (A1: 0.6 kg/m3, A2: 0.9, A3: 1.5), A1 has the highest 

CS (33.40), while A3 has the lowest (28.10). However, when it comes to BS, A1 (5.15) has the lowest value 

compared to A2 (4.60) and A3 (4.29). The tensile strength of A1 (2.89) is also lower compared to A2 (2.50) 

and A3 (2.20). The addition of fly ash also impacts the strength of the concrete. The results show that the 

highest strength was observed at a fly ash dosage of 40 orders. This indicates that the proper addition of fly 

ash can significantly enhance the strength of the concrete. The test amounts of other materials, such as coarse 

aggregate, cement, polypropylene fiber, fine aggregate, and admixture, also play an important role in 

determining the strength of the concrete. An optimized combination of these materials is necessary to achieve 

the desired strength. Calculating the F factor quantitatively measures each parameter's relative importance on 

the concrete's overall strength. The results show that the CS has the highest contribution (38.70) to the F 

factor, followed by BS (0.720) and tensile strength (0.320). This emphasizes the significance of high CS when 

using rubber tires in concrete. Comparing concrete with diverse particle sizes of rubber reveals the impact of 

particle size on the mechanical properties of rubberized concrete. The compression strength of concrete with 

0.6 kg/m3 rubber particles was higher compared to concrete with 0.9 kg/m3 rubber particles, with a 

compression strength increase of approximately 22%. The same trend was observed in the BS, where the 

concrete with 0.6 kg/m3 rubber particles had a higher value than concrete with 0.9 kg/m3 rubber particles, 

with a BS increase of approximately 8%. The tensile strength of concrete with 0.6 kg/m3 rubber particles was 

also higher compared to concrete with 0.9 kg/m3 rubber particles, with a tensile strength increase of 

approximately 14%. This indicates that smaller rubber particles contribute to higher strength in rubberized 

concrete. 

Table 3. Strength characteristics of rubber tires in concrete: results and analysis. 

 

 

 

Based on Table 4, the mix for construction contains cement (150 kg/m3), coarse aggregate (600 kg/m3), rubber 

particles (0.6, 0.9, 1.5 kg/m3), fine aggregate (450 kg/m3), fly ash (10-40 kg/m3), polypropylene fiber (0.75 

kg/m3), and 1.5% admixture. The test results show that the materials used in the mix have high strength, as 

evidenced by the R2 values in the CS test of 0.939, the TS test of 0.932, and the BS test of 0.934. These values 

show a strong relationship between the predictor and response variables. The Relative Standard Deviation 

(RSD) values in the CS test are 8.73%, in the tensile strength test are 6.23%, and in the BS test are 9.92%. 

These values represent the degree of variability or dispersion in the results of each test, with lower RSD values 

indicating lower variability and higher accuracy in the results. The RSD values for CS, TS, and BS are lower 

than the R2 values obtained from the same tests, suggesting good accuracy and consistency in the results. The 

Mean Relative Error (MRE) values in the CS test are 6.55%, in the tensile strength test are 5.23%, and in the 

Parameter A1 (0.6 kg/ m3) A2 (0.9) A3 (1.5) Freedom F Factor 

Compressive Strength (CS) 33.40 31.52 28.10 2 38.70 
Bending Strength (BS) 5.15 4.60 4.29 2 0.720 
Tensile Strength (TS) 2.89 2.50 2.20 2 0.320 
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BS test are 7.77%. These values represent the average difference between the measured and actual values, 

with lower MRE values indicating higher accuracy in the results. The MRE values for CS, TS, and BS are 

within acceptable limits, supporting the conclusion that the mix is well-suited for construction applications. 

Table 4. Comparing the strengths of the MLR model. 

 

 

 

 

 

3.2 | Prediction Compressive Strength 

 Following Table 5, the need for faster progress on any infrastructure project makes accurate 7-day and 28-

day strength predictions important nowadays. Predicting slump and CS for 7 and 28 days was the main goal 

of this study. Using the collected data, MLR and ANN models were built. Various combinations of data 

division were used to achieve the highest level of accuracy for scatter plots used for qualitative analysis, as 

well as correlation coefficients and error measures. Models for slump, 7-day CS, and 28-day CS were built 

using divisions of the data in the percentages of 60%–40%, 70%–30%, 75%–25%, and 80%–20%. After all 

the testing, it was found that a data division of 80% -20 % (training–testing) provided the highest preciseness 

for both MLR and ELM in all the concrete grades mentioned. The data distribution to the training and testing 

models was kept constant in both models. This was done to compare how well the models operated on similar 

terrain. The developed models were tested on the remaining 20% of unseen values for slump prediction, 7-

day CS, and 28-day tensile strength. The correlation coefficient, typically from 0.60 to 0.80, has shown that 

the MLR model predicts values with less accuracy. The fact that MLR can have difficulty understanding the 

non-linear relationship causes low correlation and significant errors. 

 Table 5. Comparison of MLR and ELM model results for 7 and 28-day CS. 

 

  

 

Table 5 compares two models of rubberized concrete in 7 and 28 days. MLR and ELM's performance in 

estimating the concrete's CS was compared. The results indicated that ELM performed better than MLR, as 

evidenced by higher 𝑅2 values, lower RMSE and MAE values for both 7-day and 28-day predictions. For the 

7-day predictions, ELM had a 𝑅2 value of 0.97, RMSE of 0.65, and MAE of 0.76, while MLR had a 𝑅2 value 

of 0.98, RMSE of 1.88, and MAE of 0.58. For the 28-day predictions, ELM had a 𝑅2 value of 0.98, RMSE of 

0.55, and MAE of 0.15, while MLR had a 𝑅2 value of 0.97, RMSE of 1.34, and MAE of 1.67. These results 

indicate that ELM provides more accurate CS predictions than MLR. A comparison was made between two 

models, ELM and MLR, to determine their performance in terms of four key metrics: 𝑅2, RSD, MRE, and 

running time. It was noted that 𝑅2 it is a statistical measure representing the proportion of variance in the 

dependent variable that is predictable from the independent variable. It ranges from 0 to 1, with higher values 

indicating a better fit of the model. The best performance for 𝑅2 is 1, showing that the model perfectly predicts 

the dependent variable. Root mean squared error measures the difference between the predicted and observed 

values, considering the discrepancy of all values. The smaller the RMSE value, the better the model fits the 

data. RSD measures the variability of the predicted values, expressed as a percentage of the mean. A lower 

Dataset  R2 RSD% MRE% 

Compressive strengths  Training 0.983 5.16 3.65 
 Testing 0.939 8.73 6.55 
Tensile strengths Training 0.955 6.77 4.19 
 Testing 0.932 6.23 5.23 
Bending strengths Training 0.945 5.12 4.33 
 Testing 0.934 9.92 7.77 

Models 7 Days Compressive Strength 28 Days Compressive Strength 

 R2 RMSE MAE R2 RMSE MAE 
MLR 0.98 1.88 0.58 0.97 1.34 1.67 
ELM 0.97 0.65 0.76 0.98 0.55 0.15 
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RSD value indicates less variability and a better model fit. MRE is the average relative discrepancy between 

the observed and predicted values. A lower MRE value indicates a better model fit. 

Fig. 6. Error noise in ELM and MLR. 

 

Table 6. Performance values of two models. 

 

 

Following Table 6, the 𝑅2 value measures the goodness of fit between the model and the data, with a value of 

1 indicating a perfect fit. ELMs had a slightly higher 𝑅2 value compared to MLR, with 0.954 compared to 

0.943 for MLR. This suggests that ELM is a better fit for the data than MLR. The RSD value measures the 

RSD of the residuals and indicates how well the model predicts the data. ELMs had a higher RSD value than 

Algorithm R2 RSD% MRE% Running Time/s 

ELM 0.954 6.88 5.12 2.453 
MLR 0.943 5.45 5.87 28.011 
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MLR, with 6.88% compared to 5.45% for MLR. This suggests that ELM is less accurate in its predictions 

compared to MLR. The MRE value measures the MRE and indicates the average error in the model's 

predictions. ELM and MLR had similar MRE values, with 5.12% and 5.87%, respectively. This suggests that 

both models have similar levels of accuracy in their predictions. Looking at Fig. 6, the noise over the regression 

line in an ELM refers to the residual errors or deviations between the observed and predicted values. On the 

x-axis, the predicted data ranges from 0 to 35, while on the y-axis, the observed data ranges from -20 to 180. 

The noise in the ELM model is the difference between the predicted and observed values at each point along 

the regression line. The noise indicates that the model does not perfectly capture the relationship between the 

predictor and response variables. The magnitude and distribution of the noise over the regression line can 

provide valuable insights into the validity and accuracy of the model. Finally, the running time measures the 

time it takes for the model to complete its calculations. The ELM was significantly faster than MLR, with a 

running time of 2.45 seconds compared to 28.011 seconds for MLR. This suggests that ELM is a more 

efficient model compared to MLR. In conclusion, ELM provides slightly better performance in terms of 𝑅2 

compared to MLR, but has a slightly higher RSD value and similar MRE values. ELMs are also faster, 

providing more efficient calculations. Both models have their strengths and weaknesses, and the choice 

between them will depend on the specific requirements and constraints of the problem being solved. 

4 | Conclusion 

In predicting the CS, TS, and BSs of rubberized concretes, this work used an MLR and ELM neural network. 

The architecture, methodology, and learning methods were explained based on feedforward and 

backpropagation techniques. Data from a mixed test for rubber fiber concrete was collected based on recently 

published articles. The following step involved using a dataset generated from the literature. An ELM and 

MLR rubber fiber concrete strength prediction model was developed using a data set and the MATLAB 

platform. This study analyzed the mechanical properties of rubber fiber concrete with 10%, 20%, and 30% 

replacement of fine aggregates with rubber particles. The concrete was prepared by mixing dry ingredients in 

a laboratory mixer and adding polycarboxylic acid superplasticizer, water, and polypropylene fiber. The 

mixture was cast into cube, cylinder, and beam specimens and cured under laboratory conditions. The CS of 

rubber fiber concrete was higher in comparison with traditional concrete, with an increase of approximately 

27% for 0.9 kg/m3 rubber particles. The BS was also higher, increasing approximately 8%. The tensile strength 

was lower, with a decrease of approximately 14%. The results suggest that smaller rubber particles contribute 

to higher strength in rubberized concrete. The comparison between ELM and MLR models showed that 

ELM performed better in predicting the CS of rubberized concrete, with higher 𝑅2 values and lower RMSE 

and MAE values for both 7-day and 28-day predictions. ELM had a 𝑅2 of 0.97 (7 days) and 0.98 (28 days), a 

RMSE of 0.65 (7 days) and 0.55 (28 days), and a MAE of 0.76 (7 days) and 0.15 (28 days). MLR had a 𝑅2 of 

0.98 (7-day) and 0.97 (28-day), a RMSE of 1.88 (7-day) and 1.34 (28-day), and a MAE of 0.58 (7-day) and 1.67 

(28-day). These results indicate that ELM provides more accurate predictions than MLR. 
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