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Foamed Concrete (FC) is a kind of lightweight concrete distinguished by including a stable prepared foam in 

the mix fraction, resulting in a network of air gaps forming inside the material. Its physical and mechanical 

qualities are heavily impacted by its microstructural characteristics, which are connected to many factors such 

as the volume of foam, the presence of mineral or chemical additions, mixing process features, and so on. This 

study aimed to test the impact of the addition of fine LWA and the partial substitution of cement with  Fly Ash 

(FA) on the qualities of hardened FC, specifically the compressive strength of LWA FC, as well as its durability. 

Ordinary Portland cement CEM I 52.5R and  FA class F (25 wt%) are used to replace the cement. The water-

to-binder ratio (w/b) for all mixtures is set at 0.40, while the paste foam proportion is set at 1:2. Lightcrete 400, 

a foaming agent manufactured by Sika Germany, is utilized to make the foam. To achieve a concrete slump 

flow diameter greater than 500 mm, a custom-made polycarboxylate superplasticizer is used without a de-

foaming agent compatible with the foaming agent. As a hybridized model, an Extreme Learning Machine (ELM) 

and Support Vector Machine (SVM) are used to improve the precision of experimental testing and data. Using 

the regression indices RMSE, R2, r, and MAE, the experimental findings demonstrated that, for a given bulk 

density, the integration of fine lightweight aggregate has a considerable effect on the development of 

compressive strength based on the features of the lightweight aggregate. Nevertheless, the thermal conductivity 

of  FC  is largely determined by its dry density and aggregate composition. Also, the use of fine LWA greatly 

minimizes the drying contraction of FC. 
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1|Introduction  

There was extensive use of lightweight concrete in the building sector. Its decreased density minimizes the 

structure's self-weight, reducing material and cost member size [1]. Reducing the total amount of concrete 

also contributes to greener buildings. LWA concrete, no-fines concrete, and FC are the three primary varieties 

of LWA concrete [2]–[7]. Foamed Concrete(FC), gas concrete, aerated, or cellular concrete is a concrete form 

in which air is either pumped or mixed in during production. Foamed LWA concrete is distinguished by its 

acoustic insulation, low density, self-compaction, flowability, and excellent thermal properties. It may be used 

for various construction purposes, such as soil stabilization, trench restoration, floor and roof screeds, thermal 

and acoustic insulation, and void filling [3]. Some studies have been undertaken on LWA Fc, including the 

incorporation of recyclable waste into FC [10]–[12], grading behavior [10]–[13], and structural improvement 

[8], [9]. Various additives and admixtures, including silica fume, FA, and superplasticizer, were used in FC to 

boost its strength [10]. Using a superplasticizer improves FC's flowability with a reduced water content. 

Consequently, the reduced water content may improve long-term mechanical characteristics, such as 

durability, early age strength, permeability, etc. [3], [11]. Polycarboxylate ether superplasticizer is a type of 

high-range water reducer that can significantly reduce the water needed in concrete, increasing its workability. 

When added to a molecular suspension, it helps to prevent the formation of agglomerates and improves the 

stability of the foam in FC. Compared to traditional naphthalene or melamine superplasticizers, 

polycarboxylate ether superplasticizers offer several advantages, including entraining more air in concrete and 

maintaining a stable foam [3], [12], [13]. Though superplasticizers successfully produce high-performance 

concrete, it is unknown to what extent superplasticizers enhance the efficiency of LWA FC because the 

effectiveness of various superplasticizers on diverse concrete mixtures alters with dosage [14], [15]. Fig. 1 

shows a cement, sand, water, and foam mixture. 

Fig. 1. A mixture of cement, sand, water, and foam. 

Concrete is regarded as the most significant construction material on a global scale and is also the most 

frequently utilized material for construction. The current construction industry's interest in LWA FC as a 

building material is high owing to its numerous advantages, such as simplicity of production, low cost, reduced 

weight, durability, and efficiency [16]. FC is a new type of lightweight concrete with several desirable 

properties, including its self-compaction and ultra-low density—little dimensional change, flowability, and 

self-levelling nature. Moreover, the material may be constructed to have great thermal insulating qualities, 

high load-bearing ability, and regulated low strength, and it could be re-excavated if required. Due to its unique 

qualities, FC has the potential to be used for a variety of building purposes. For instance, Jones and McCarthy 

[17] examined the structural possibilities of FC. Since FC has good thermal insulation capabilities and is 

lightweight, it may be utilized in conjunction with other materials for structural applications requiring more 

strength [23]. In the literature, it is well accepted that the component materials and amounts of the mix impact 

the characteristics and behaviour of FC [24]–[27]. Literature and previous studies [28]–[30] have identified 

the potential impact of various component materials on CS. The compressive strength of FC is affected by 
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surfactant type, cement type, content, density, w/c ratio, and curing regime [24]. The demand for and usage 

of FC as a construction material has increased in the construction industry due to its advantageous qualities, 

such as its reduced long-lasting performance, greater thermal insulation, and weight. By trapping artificial air 

bubbles in its cement mortar using an appropriate foaming agent, FC is lighter than conventional concrete 

[25]. Fine aggregate (sand) might be partly or completely substituted with renewable resources, such as 

coconut fibers, silica fume, and pulverized fuel ash, in the production of FC. In addition, FC has great promise 

as a structural material. In general, the strength of FC with densities ranging from 500 kg/m3 to 1400 kg/m3 

is between 1 N/mm2 and 9 N/mm2, respectively [26]. It is important to note that porosity and density play 

a key influence in determining the strength of FC [27]. 

Pozzolan elements have been used to replace sand or cement in concrete artificially or naturally. In addition 

to environmental and economic considerations, it has been shown that FC's naturally low strength may be 

improved. Mechanical qualities have been one of the primary research subjects, though little is known about 

the impact of different additive types on the mechanical properties of FC. Even though LWA FC has been 

extensively explored, problems such as poor flexural strength prevent its widespread use [28]. Various mix 

percentages, cement dosage, curing process, water-cement ratio, additive, foaming agent, cementitious 

materials, foam volume, and waste byproduct addition influence the strength of FC. The density influences 

the strength of FC to some degree. Thus, it is always necessary to strike a balance between density and strength 

to enhance strength while minimizing density to the greatest extent feasible [29]. Occasionally, this may be 

accomplished by choosing high-quality foaming agents, optimizing cementitious materials, and using LWA. 

The filler types and the incorporation of oil palm biomass will affect the water-solid proportions of constant 

density in the concrete, and the decrease in sand particle size will enhance the concrete's strength [30]. Due 

to its superior mechanical and thermal properties, such as sound insulation capabilities, good thermal 

performance, low self-weight, and high flowability, FC has recently garnered significant interest from 

industrial players and construction material makers. In addition, FC is an eco-friendly construction material 

due to its low aggregate use and strong capacity to include waste materials like natural fibers. FC combines 

cement paste (slurry) and homogenous foam injected using an appropriate foaming agent and may be 

considered a self-compacting material. The air content in FC exceeds 25% by volume, differentiating it from 

extremely air-entrained materials. The use of FC in the Malaysian building sector is relatively new despite its 

widespread use in other countries. While FC has been used in some housing and void-filling projects in 

Malaysia, its full potential has not yet been explored. In light of this, a study was conducted to investigate the 

use of additives to improve the mechanical properties of FC. The study aimed to identify additives that could 

enhance FC's strength, durability, and other properties, making it a more viable option for use in construction 

projects in Malaysia. 

1.1 | Objective of Study and Problem Statement 

This work created LWA-FC mixtures combining aggregate and cement paste with premade foam. This study 

emphasizes the impact of FA and fine LWA additions on the characteristics of FC with a density of less than 

500 kg/m3. This study focuses on the flexural strength, compressive strength, and splitting tensile strength 

of LW FC made using 0.5% and 1.0% FA aggregate and a desired density of 1500 kg/m3. The work aims to 

see the impact of adding fine, LWA, and partially substituting FA cement on the physical and CS of hardened 

FC, including its flexural strength, compressive strength, splitting tensile strength, and durability. The study 

aims to determine how these properties are affected by various factors such as foam volume, the presence of 

mineral or chemical additions, and mixing process features. The study uses a water-to-binder ratio of 0.40 

and a paste foam proportion of 1:2, with a custom-made polycarboxylate superplasticizer and foaming agent, 

to achieve a slump flow diameter greater than 500 mm. The study utilizes a hybridized model of Extreme 

Learning Machine (ELM) and Support Vector Machine (SVM) to improve the precision of experimental 

testing and data. The experimental results demonstrate that the integration of fine LWA has an obvious effect 

on the development of CS, and the use of fine LWA reduces the drying contraction of FC. The study also 

shows that its dry density and aggregate composition mainly determine the thermal conductivity of FC. Fig. 
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2 shows the Application of foam concrete in blocks (a), panels (b), ground stabilization (c), and bridge 

abutment (d). 

1.2 | Significance of Study 

The study on the impact of adding fine LWA and partially substituting cement with FA on the physical and 

CS of FC is significant for several reasons: 

I. Sustainability: using LWA and FA as partial replacements for cement in FC can lead to a more sustainable 

construction industry by reducing non-renewable resource consumption, carbon emissions, and waste. 

II. Cost-effectiveness: using LWA and FA can also lead to cost savings as these materials are often less expensive 

than traditional construction materials, and their use can reduce the overall weight of structures, potentially 

leading to reduced transportation costs. 

III. Improved performance: the study provides insights into how the addition of fine LWA and the partial 

substitution of cement with FA can impact the physical and CS of FC, such as its flexural strength, compressive 

strength, splitting tensile strength, and durability. This information can help architects, engineers, and 

construction professionals design and build more resilient and efficient structures. 

Innovation: the study's use of a hybridized model of ELM and SVM to improve the precision of experimental 

testing and data represents an innovative approach to analyzing and interpreting the study results. 

Fig. 2. Application of foam concrete in blocks; (a) panels, (b) ground, (c) 

stabilization, (d) bridge abutment. 

 

1.3 | Dynamic Increase Factor 

To analyze the effect of strain rate on the mechanical properties of concrete, a Dynamic Increase Factor 

(DIF) vs strain ratio approach is typically used to compare dynamic and static strength [31], [32]. A normalized 

DIF is often employed to account for variations in material strength. Previous research has shown that tensile 

strength is more sensitive to strain ratio effects at lower strain rates than compressive strength [33], [34]. To 

accurately assess the impact of strain ratio on concrete's mechanical characteristics, the data obtained from 

failure analysis was refined to determine the DIF, depicted in Fig. 10. Additionally, the collected data was 

compared to existing empirical models to confirm that the results aligned with previous findings in the 

literature. The CEB model seems to suit the existing data well. The DIF for tensile strength is calculated as 
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σts = unconfined uniaxial tensile strength in quasi-static. 

σtd = unconfined uniaxial tensile strength in dynamic loading conditions. 

γs = 10
(7.11αs−1.33); αs = 1/(10 + 6σcs /σco ); ε̇s = 3 × 10−6 s−1. 

σco = 10MPa; σcs = the unconfined quasi-static uniaxial compressive strength. 

Tedesco et al. [35] conducted a set of dynamic splitting experiments on concrete samples with varying CSs. 

A bilinear tensile DIF regression formula was proposed 

Malvar and Ross [36] suggested an analogous formula to the CEB fitted to the available data for strain rates 

below 1 𝑠−1: 

in which 𝛾𝑠 = 10
(6𝛼𝑠−2), 𝛼𝑠 = 1/(1 + 8𝜎𝑐𝑠/𝜎𝑐𝑜), and 𝜀𝑠 = 1 × 10−6 s−1. 

Katayama et al. [37] studied the strain ratio impact on the tensile strength of various concrete 

Zhou and Hao [38] advocated a tensile DIF curve fitted from empirical results for concrete-like materials as 

Cadoni [39] presented a tensile DIF calculation for concrete aggregates based on rock testing data that is 

The disparities between experimental and numerical values are presented. It demonstrates that the available 

models often underestimate the empirical values in the quasi-static and moderate strain rate domain. 

Therefore, more relevant expressions must be selected while developing computations. 

DIF =
σtd
σts

=

{
 
 

 
 
1,     ε̇z < ε̇s,

(
ε̇z
ε̇s
)
1.016αs

,     ε̇s < ε̇z ≤ 30s
−1,

γs (
ε̇z
ε̇s
)
0.33

,     ε̇z > 30s
−1.

 (1) 

DIF =
σtd
σts

=

{
 

 
1 + 0.1425[lg(ε̇z) + 5.8456] ≥ 1.0,

ε̇z ≤ 2.32s−1,

1 + 2.929[lg(ε̇z) − 0.0635] ≤ 6.0,

ε̇z > 2.32s−1.

 (2) 

DIF =
σtd
σts

=

{
 
 

 
 
1    ε̇z ≤ ε̇s,

(
ε̇z
ε̇s
)
αs

,     ε̇s < ε̇z ≤ 1s
−1,

γs (
ε̇z
ε̇s
)
0.33

,     ε̇z > 1s
−1,

 (3) 

DIF =
σtd
σts

= 1.0 + 0.1 [lg (
ε̇z
ε̇s
)]. (4) 

DIF =
σtd
σts

= {

1, ε̇z ≤ 10
−4s−1,

1 + 0.26[lg (ε̇z) + 4.0769], 10−4 < ε̇z ≤ 1s
−1,

1 + 2[lg (ε̇z) + 0.53], ε̇z > 1s
−1.

 (5) 

DIF =
σtd
σts

=

{
 
 

 
 1 + 0.0225[lg (ε̇z) + 5.3333],

ε̇z ≤ 0.1s
−1,

1.6 + 0.7325[lg(ε̇z)]
2 + 1.235 lg(ε̇z) ,

0.1 < ε̇z ≤ 50s
−1.

 (6) 
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2 | Methodology 

2.1 | Materials 

This work aimed to determine the impact of fine LWA and partial substitution of FA cement on the properties 

of hardened FC. Multiple mixtures with distinct compositions were poured and tested. Normal Portland 

cement CEM I 52.5R has been used as defined by EN 197-1 and supplied by Heidelberg Cement. Class F FA 

has replaced 30% of the cement. The chemical parameters of the utilized binder are listed in Table 1, while 

the physical properties are indicated in Table 3. The composition of the five mixtures tested in the study is 

shown in Table 2. Two types of fine LWA were used. The ratio of water to binder in all mixes was 0.30, 

whereas the proportion of paste to foam was set at 1:2. Lightcrete 250, a foaming agent manufactured by Sika 

Germany, was used to make the foam. To provide a concrete slump flow diameter greater than 400 mm, a 

custom polycarboxylate superplasticizer Sika—Viscocrete without a de-foaming agent compatible with the 

foaming agent was also utilized. The selection of this consistency class is based on the fact that FC couldn't 

be vibrated without risking the destruction of its foam bubbles. 

Consequently, it must have a high filling capacity to generate homogenous samples devoid of large spaces. A 

chemical stabilizer was used to improve the mixture's stability and uniformity. Five distinct mixtures with a 

420 kg/m3 density were devised and manufactured. In this work, the dry density of FC mixtures was 

estimated to range from 400 to 500 kg/m3. The formulation of the mixtures was based on the assumption 

that chemically bound water constitutes about 20% of the cement weight. The produced mixtures were very 

stable, with no segregation or bleeding. Fig. 2 depicts the densities of the hardened FC. The findings 

demonstrate that the density of the concrete produced was close to the specified range (450–500 kg/m3). 

Because of the introduction of fine lightweight particles and FA, small differences in the dry densities of FC 

mixtures may be seen. The addition of FA somewhat raised the FC's dry density. 

2.1.1 | Test process 

The test design for this study involved the production of multiple mixtures with varying compositions of fine 

LWA and FA substitution levels. Five distinct mixtures were created with a density of 420 kg/m3, and the 

dry density of the FC mixtures was estimated to range from 400 to 500 kg/m3. The mixtures were poured 

into moulds and allowed to cure for 28 days in a controlled environment. After the curing period, the 

hardened concrete samples were tested for CS using standard testing procedures. The thermal conductivity 

of the samples was also measured using a thermal conductivity meter, and the drying shrinkage was evaluated 

by measuring the length change of the samples over time. The experimental results were analyzed using 

regression indices RMSE, R2, r, and MAE to determine the effects of the added fine LWA and FA on the 

properties of the FC. A hybridized model of ELM and SVM was used to improve the precision of the 

experimental testing and data analysis. After preparing the mixtures, the following tests were conducted to 

evaluate the properties of the hardened FC: 

I. CS test: Cylindrical samples with a diameter of 100 mm and a height of 200 mm were cast and cured for 28 

days at 20 ± 2°C and a relative humidity of 95%. Then, the compressive strength of the samples was tested 

at a rate of 0.5 MPa/s. 

II. Durability test: The durability of the FC was evaluated by subjecting the specimens to freeze-thaw cycles. 

Cylindrical specimens with a diameter of 100 mm and a height of 200 mm were cast and cured for 28 days 

under the same conditions as the compressive strength test. Then, the specimens were subjected to 100 

freeze-thaw cycles, each consisting of 24 hours of immersion in water at 20°C followed by 24 hours of 

exposure to air at -20°C. The specimens' mass loss and CS loss were measured after the test. 

The tests were done based on the relevant standards and specifications. The average values of the test findings 

were calculated and analyzed to determine the impact of the fine LWA and FA on the properties of the FC. 
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Table 1. The chemical parameters of the utilized binder. 

 

 

 

 

 

 

 

 

 

 

Table 2. The composition of the five mixtures tested in the study. 

 

 

 

 

Table 3. Physical properties of the utilized binder. 

 

 

 

 

 

  

The dry density of the FC mixtures was estimated to range from 400 to 500 kg/m3, with a target density of 

420 kg/m3. The formulations of the mixtures were based on the assumption that chemically bound water 

constitutes about 20% of the cement weight. 

2.2 | Support Vector Machines 

SVMs are an advanced supervised learning technique for classification and regression [20]. Classification and 

regression analysis may be performed with the help of the machine learning method known as SVMs. The 

primary principle underlying SVMs is identifying the optimal border or hyperplane that divides the space into 

distinct data groups. When working with high-dimensional and complicated datasets, SVMs shine. In SVM, 

a hyperplane divides the data into two categories after projecting it into a higher-dimensional space. 

Maximizing the margin or distance between the classes characterizes the hyperplane. Support vectors are the 

data points nearest to the hyperplane that are utilized to locate the hyperplane. Nonlinear classification is also 

possible using SVM. In the case of linear classification, the data can be separated by a straight line or plane. 

In the case of nonlinear classification, a kernel function is used to transform the data into a higher-dimensional 

space where it can be linearly separated. SVM has several advantages over other classification algorithms. In 

addition to effectively handling noisy data, it can process massive datasets with many characteristics. SVM 

may be used for both classification and regression analysis, and it is based on solid mathematical foundations. 

SVM's sensitivity to kernel function selection and hyperparameter setting is a limitation of the method. With 

Parameter Value 

SiO2 21.70 
Al2O3 5.45 
Fe2O3 2.80 
CaO 64.20 
MgO 1.35 
SO3 2.55 
Loss on Ignition 1.95 
Blaine fineness 380 m2/kg 
Initial setting time 140 minutes 
Final setting time 280 minutes 
CS at 2 days 33 MPa 
CS at 7 days 47 MPa 
CS at 28 days 59 MPa 
Note: the above values are for the normal Portland 
cement (CEM I 52.5R) used in the study. 

Mix Cement (kg/m3) FA (kg/m3) Water (kg/m3) Fine LWA (kg/m3) CS (MPa):2, 7, 28 days 

1 301 129 90 858 33-47-59 
2 301 129 90 573 33-47-59 
3 301 129 90 429 33-47-59 
4 301 129 90 286 33-47-59 
5 301 129 90 143 33-47-59 

Property Value 

C3S 62.1% 
C2S 17.8% 
C3A 9.8% 
C4AF 7.1% 
Blaine fineness 355 m2/kg 
Specific gravity 3.15 
Setting time (Vicat) 190 min 
Note that the water to binder amount in all mixes was 
0.30, and the proportion of paste to foam was set at 
1:2. 
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huge datasets, SVM may also be quite computationally expensive. In conclusion, SVM is a robust machine-

learning technique used extensively in the fields of classification and regression. Its usefulness in areas as 

diverse as finance, health, and image analysis stems from its capacity to process large, complicated 

information. 

2.2.1 | SVM Representation 

Here, the simple QP formulation for SVM classification is provided [46]–[49]. 

SV classification 

SVM classification, Dual formulation 

The variables 𝜉i,  "," are known as slack variables, and they quantify the inaccuracy at point (x𝑖 , x𝑗). When the 

training points' numbers are substantial, training SVM becomes rather difficult. 

To reduce the ensemble's generalization error, the optimal weight vector may be determined based on Eq. 

(28) 

The kth variable of ω_opt,i.e., ω (opt.k), can be solved by the Lagrange multiplier. 

2.3 | Extreme Learning Machine 

The ELM is an algorithm for supervised learning tasks such as classification and regression [44]. ELM is a 

feedforward neural network that differs from traditional neural networks in that the hidden layer is randomly 

generated rather than trained [45]. The training process involves randomly generating the hidden layer and 

solving linear equations to obtain the output layer weights, making ELM faster than traditional neural 

networks. ELM has been shown to perform well on various classification and regression tasks, and it is 

particularly suited for handling large datasets. However, it is less interpretable than other machine learning 

algorithms and may not perform well on datasets with high levels of noise or outliers [46]. 

G= activation performance. wi = [wi1, wi2, … , win]
T = weight vector connecting ith input neurons to hidden 

neurons. 

min
f,ξi

  ∥ f ∥K
2+ C∑  

i=1

ξiyif(𝐱i) ≥ 1 − ξi, for all iξi ≥ 0. (7) 

min
αi
 ∑  

1

i=1

αi −
1

2
∑  

1

i=1

∑ 

1

j=1

αiαjyiyjK(𝐱i, 𝐱j)0 ≤ αi ≤ C, for all i, (8) 

∑ 

l

i=1

αiyi = 0. (9) 

E(x) = (∑ 

N

i=1

ωifi(x) − d(x))(∑ 

N

j=1

ωjfj(x) − d(x)). (10) 

E =∑  

N

i=1

∑ 

N

j=1

ωiωjCij.  

ωopt = argmin
ω

(∑  

N

i=1

∑ 

N

j=1

ωiωjCij). (11) 

∑βiG(wi. xj + bi) = oj

L

i=1

  j = 1, 2, 3, … , N. (12) 
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xj = [xj1, xj1, … , xjm]
T
= input vector. 

βi = [βi1, βi2, … , βim]
T = weight vector connecting output neurons to hidden neurons.  

bi = [bi1, bi2, … , bim]
T = bias vector. 

oj = [oj1, oj1, … , ojm]
T
= output vector. 

Here, there are two phases for OS-ELM. 

a. Initialization step 

Batch ELM is applied to begin the learning system with initial training data from the given training set [47]. 

Assign random input weights 𝑎𝑖 and bias 𝑏𝑖 (for additive hidden nodes) or centre  𝑎𝑖 and impact factor 𝑏𝑖 (for 

RBF hidden nodes), i N =1, ,   . 2. 

Measure the initial output weight β(0) = P0H0
TT0 where 

b. Sequential learning step 

The (k + 1)th chunk of new observations could be. 

 

 

 

 

 

 

3 | Result and Discussion 

To determine the efficiency of the ELM and SVM models, 80% of the data is completely divided for training 

and 20% for testing. Five different FC mixtures were prepared with varying amounts of materials. The 

mixtures were labelled 1 through 5, and the amounts of cement, FA, water, and fine LWA for each mixture 

are shown in Table 1. The CS of each mixture was tested at 2, 7, and 28 days, and the results are presented in 

Table 1 as well. As expected, the compressive strength of the FC rose with time. At 2 days, mixture 1 had the 

highest compressive strength at 33 MPa, while mixture 5 had the lowest at 14 MPa. By 7 days, mixture 1 still 

had the highest compressive strength at 47 MPa, while mixture 5 had increased to 25 MPa. At 28 days, mixture 

1 maintained its position with the highest compressive strength at 59 MPa, while mixture 5 reached 35 MPa. 

 

 

H0 = [

G(a1, b1, x1) ⋯ G(aÑ, bÑ, x1)
⋮ ⋱ ⋮

G(a1, b1, xN0) ⋯ G(aÑ, bÑ, xN0)
]

N0×Ñ

. (13) 

P0 = (H0
TH0)

−1
 and T0 = [t1, ⋯ , tN0]

T. (14) 

k + 1 = {(xi, ti)}
i=(∑  k

j=0Nj)+1

∑  k+1
j=0 Nj .  

Hk+1 =

[
 
 
 
 G (a1, b1, x(∑  k

j=0Nj)+1
) ⋯ G(aÑ, bÑ, x(∑  k

j=0Nj)+1
)

⋮ ⋱ ⋮

G (a1, b1, x∑  k+1
j=0 Nj

) ⋯ G (aÑ, bÑ, x∑  k+1
j=0 Nj

)
]
 
 
 
 

Nk+1×Ṅ

. (15) 

Tk+1 = [t(∑  

k

j=0

Nj)+ 1,⋯ , t∑  

k+1

j=0

Nj]

T

.  

Kk+1 = Kk + Hk+1
T Hk+1.  

β(k+1) = β(k) + Kk+1
−1 Hk+1

T (Tk+1 − Hk+1β
(k)).  
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Fig. 3. 2-day 𝐟𝐜 in FC. 

Fig. 3 indicates the relationship between cement content and 2-day CS for the dataset. The x-axis represents 

the cement content in kg/m3, while the y-axis represents the 2-day compressive strength in MPa. The plot 

shows a general trend in 2-day compressive strength as the cement content increases. However, the 

relationship is not strictly linear, as some data points fall outside the trend line. This could be due to other 

factors not accounted for in the plot, such as variations in the mixing process or the curing conditions. The 

plot also includes the correlation coefficient (r), which measures the strength and direction of the relationship 

between cement content and 2-day CS. Accordingly, the correlation coefficient is positive, indicating a 

positive relationship between the two parameters. However, the coefficient value is relatively low, indicating 

that the relationship is not very strong. 

Fig. 4. 7-day 𝐟𝐜 in FC. 

Based on the provided data in Fig. 4, a correlation analysis was conducted to investigate the relationship 

between input candidates (cement content, FA content, w/b rate, and foam content) and CS of lightweight 

concrete at 2, 7, and 28 days. The correlation analysis showed that the cement content had a positive and 
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strong correlation with the CS of lightweight concrete at 2, 7, and 28 days, with correlation coefficients of 

0.983, 0.956, and 0.962, respectively. In contrast, the w/b rate had a negative and moderate correlation with 

the CS of lightweight concrete at 2, 7, and 28 days, with correlation coefficients of -0.659, -0.645, and -0.659, 

respectively. The FA and foam content showed weak correlations with the CS of lightweight concrete at 

different ages. In terms of compressive strength at 7 days, a scatter plot showed a positive linear relationship 

between the cement content and compressive strength. The scatter plot indicated that higher cement content 

was associated with higher CS, as shown by the upward trend of the data points. However, the scatter plot 

also showed some variability in compressive strength at the same cement content, suggesting that other 

factors may also influence the compressive strength of lightweight concrete at 7 days. Overall, the correlation 

analysis and scatter plot indicate that the cement content and water-to-binder ratio are critical factors affecting 

the CS of lightweight concrete at different ages. These findings can provide valuable insights for optimizing 

lightweight concrete mix design to achieve desired CS levels. Based on the provided data in Fig. 5, a plot was 

generated to visualize the CS of FC at 28 days. The plot shows that the compressive strength of the five mixes 

ranged from approximately 33 MPa to 47 MPa, with mix 1 having the highest compressive strength at 47 

MPa. 

Fig. 5. 28-day fc in FC. 

It is worth noting that as the amount of fine LWA decreased in the mixtures, the compressive strength also 

reduced. For example, mixture 1, which had the highest amount of fine LWA at 858 kg/m3, had the highest 

compressive strength throughout the testing period. On the other hand, mixture 5, which had the lowest 

amount of fine LWA at 143 kg/m3, had the lowest compressive strength. However, it is important to 

remember that the mixtures' densities also varied slightly due to adding FA, which may have affected the 

compressive strength somewhat. As FC is a new technique, there are presently no defined procedures for 

determining its physical and mechanical qualities. Consequently, techniques for sample preparation and 

testing methodologies typically utilized for regular concrete were modified for this study. According to PN-

EN 12390-3:2011 + AC:2012, the loading ratio was estimated for cellular concrete masonry units. The density 

was determined based on PN-EN 12390-7:2011. According to PN-EN 12390-3:2011 + AC:2012, the CS was 

defined through 150×150×150 mm standard cubes. According to PN-EN 772-1: 2015 + A1:2015, the loading 

ratio was calculated for cellular concrete masonry units. The modulus of elasticity was calculated in accordance 

with Instruction of Research Building Institute 194/98 and PN-EN 12390-13:2014-02 using 150 × 300 mm 

cylindrical specimens. At the mid-height of the samples, two electrical resistance strain gauges with 100 mm 

measurement length were glued to opposing sides. The stress-strain feature was measured to determine the 

modulus of elasticity. In accordance with PN-EN 12390-5:2011, the flexural strength of 100×100× 500mm 
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beams was evaluated in a three-point bending arrangement. The standard spacing between supports was 300 

millimetres. Rollers permitted unfettered horizontal motion. An empirically established optimal displacement 

rate of 0.1 mm/min was used to load samples. Using 150×150×150 mm standard cubes, the parameters of 

degradation during Ireeze-thaw cycles were analyzed. The test had twenty-five cycles of freezing and thawing. 

The samples were cooled to 18∘ C within 2" h for each cycle. The specimens were then frozen at −18 ± 2∘C 

for 8 hours before being thawed in water at +19∘C ± 1∘C for 4 hours. The findings reported that the addition 

of fine Lightweight Aggregate (LWA) and partial substitution of cement with FA greatly influenced the CS 

of FC. The compressive strength increased as the proportion of fine LWA increased, which indicates that the 

fine LWA played a key role in enhancing the strength of the FC. The CS also increased as the curing time 

increased, indicating that the FC continued to gain strength over time. The addition of FA had a negative 

effect on the CS of the FC, which may be due to the slower rate of strength gain for the mixtures containing 

FA. The mix with the highest proportion of fine LWA (mix 1) had the highest compressive strength, while 

the mix with the lowest proportion of fine LWA (mix 5) had the lowest compressive strength. The results 

suggest that adding fine LWA can effectively improve the strength of FC. At the same time, the partial 

substitution of cement with FA should be carefully considered due to its negative impact on strength. 

3.1 | Numerical Discussion 

As another choice to traditional and typical methodologies, Artificial Intelligence(AI) algorithms such as 

ANN, Fuzzy Inference Systems (FIS), and Genetic Programming (GP) may forecast complex challenges in 

many various areas in the shear strength of FRP-RC members [2], [3], [49], [50]. After analyzing the related 

parameters in the ELM and SVM models, their testing and training performance concerning prior 

performance measures was evaluated (Table 4). The goodness of fit models in the testing phase of data were 

optimized as the primary parameter for comparing the performance of the two models in terms of their 

capacity to forecast. The RMSE values of both models were compared to compare the regression parameters, 

and the model with the value closest to 0 had the best performance. Because the findings were near zero, 

comparing the RMSE of both phases might demonstrate improved performance in forecasting FC's 

mechanical and durability characteristics in this investigation (as the superior performance). Comparing the 

RMSE of the train and test phase revealed that ELM offered the greatest performance. Also, the R-square 

values for ELM throughout the train and test phases are 0.878. When R2 is closer to 1, the model's 

performance is ideal. 

Fig. 6. Regression plot of ELM. 
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In this plot, the polyfit function is used to fit a linear regression model, and the polyval function is used to 

generate the predicted y values based on the model. The scatter function is then used to create a scatter plot 

of the data, and the plot function is used to plot the regression line. The lsline function adds a least-squares 

regression line to the plot. The text function displays the R-squared value on the plot, and the x label, y label, 

and title functions are used to add axis labels and a plot title. 

Fig. 7. Error curve for ELM model training. 

The error curve plot for the ELM in Fig. 7 shows the change in error values over time as the model trains. 

The x-axis indicates the number of epochs or iterations, while the y-axis shows the error values. The curve 

starts with a high error value and gradually decreases over time as the model improves. In this particular plot, 

the error values are represented as red points on the curve, with each point indicating the error value at a 

particular epoch. The error values range from a minimum of -141.203 to a maximum of 14.72607, with a 

mean error value of -53.884. The plot also shows that the error values fluctuate during training, with 

occasional spikes and dips. However, the overall trend of the curve is downwards, indicating that the model 

is improving over time. The final error value for the model is -9.29607, which represents a significant 

improvement over the initial error value. Overall, this error curve plot provides a useful visualization of the 

performance of the ELM model, allowing us to assess its accuracy and track its progress over time. 

 Table 4. The R2 and polynomial equations for ELM and SVR models for each input variable. 

 

 

 

 

 

Table 4 shows each input variable's coefficient of determination R2 and the polynomial equations for the ELM 

and SVR models. The R2 values range from 0.848 to 0.941, indicating that the models fit the data well. The 

ELM model has an R2 of 0.895 for the cement content input variable, while the SVR model has an R2 of 

0.921. The polynomial equations for the ELM and SVR models are y = -0.0089 x2 + 0.8583x - 17.2885 and y 

= -0.015 x2 + 1.2043x - 26.2726, respectively. This suggests that both models have a similar fit to the data, but 

the SVR model has a slightly better fit with a higher R2 value. The ELM model has an R2 of 0.877 for the 

oven-dry density input variable, while the SVR model has an R2 of 0.912. The polynomial equations for the 

ELM and SVR models are y = -0.0014 x2 + 0.2191x + 99.2864 and y = -0.0015 x2 + 0.2371x + 97.6215, 

Input Variable ELM Model SVR Model 

Cement content R2 = 0.895 R2 = 0.921  
y = -0.0089x2 + 0.8583x - 17.2885 y = -0.015 x2 + 1.2043x - 26.2726 

Oven dry density R2 = 0.877 R2 = 0.912  
y = -0.0014 x2 + 0.2191x + 99.2864 y = -0.0015 x2 + 0.2371x + 97.6215 

Water binder ratio R2 = 0.848 R2 = 0.894  
y = -0.0163 x2 + 1.5586x - 23.2372 y = -0.0172 x2 + 1.7086x - 23.2966 

Foam content volume R2 = 0.927 R2 = 0.941  
y = -0.0262 x2 + 2.0983x - 8.3985 y = -0.0268 x2 + 2.1944x - 8.6871 
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respectively. Again, both models have a similar fit to the data, but the SVR model has a slightly better fit with 

a higher R2 value. The ELM model has an R2 of 0.848 for the water binder ratio input variable, while the 

SVR model has an R2 of 0.894. The polynomial equations for the ELM and SVR models are y = -0.0163 x2 + 

1.5586x - 23.2372 and y = -0.0172 x2 + 1.7086x - 23.2966, respectively. Both models fit the data well, but the 

SVR model has a slightly better fit with a higher R2 value. The ELM model has an R2 of 0.927 for the foam 

content volume input variable, while the SVR model has an R2 of 0.941. The polynomial equations for the 

ELM and SVR models are y = -0.0262 x2 + 2.0983x - 8.3985 and y = -0.0268 x2 + 2.1944x - 8.6871, respectively. 

Both models fit the data well, but the SVR model has a slightly better fit with a higher R2 value. Finally, the 

results suggest that both ELM and SVR models can be used to accurately predict the properties of FC based 

on the input variables. The SVR models generally have a slightly better fit to the data than the ELM models, 

but both models perform well. The polynomial equations for each model can be used to predict the output 

variable based on a given input variable. Note that the polynomial equations represent the relationship 

between the input and output variables. The coefficients of the equations are determined by the ELM and 

SVR models based on the training data. 

Fig. 8. Polynomial equations for ELM and SVM Models. 

The polynomial equations for the ELM and SVR models in Fig. 8 provide a mathematical relationship between 

the input variables and the output variable CS of the FC. The plots show how the predicted CS varies as a 

function of each input variable based on the polynomial equations. The ELM and SVR models have similar 

curves for the cement content input variable, with a gradual increase in predicted compressive strength as the 

cement content increases up to a certain point, followed by a decrease in predicted compressive strength. The 

peak of the curve occurs at different cement content values for the two models, with the SVR model having 

a slightly higher peak. For the oven-dry density input variable, the ELM and SVR models have similar curves, 

with a gradual increase in predicted compressive strength as the oven-dry density increases up to a certain 

point, followed by a decrease in predicted CS. The peak of the curve occurs at similar oven dry density values 

for both models. For the water binder ratio input variable, the ELM and SVR models have similar curves, 

with a gradual decrease in predicted CS as the water binder ratio increases up to a certain point, followed by 

an increase in predicted compressive strength. The peak of the curve occurs at slightly different water binder 

ratio values for the two models, with the SVR model having a slightly higher peak. For the foam content 

volume input variable, the ELM and SVR models have similar curves, with a gradual increase in predicted 

compressive strength as the foam content volume increases up to a certain point, followed by a decrease in 

predicted compressive strength. The peak of the curve occurs at similar foam content volume values for both 
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models. Overall, the polynomial equations and corresponding plots provide insights into the relationships 

between the input parameters and the output variable and can be used to predict compressive strength based 

on given input variable values. The correlation statistical indicators between each input candidate, including 

cement content, oven-dry density, water-to-binder ratio, and foam content versus compressive strength, are 

shown in Table 5. Pearson's correlation coefficient (r) and coefficient of determination R2 were used to 

evaluate the strength of the linear relationship between the input variables and compressive strength. The 

results show that all input variables have a significant linear relationship with compressive strength, with R2 

values ranging from 0.63 to 0.86. 

 Table 5. Correlation statistical indicators between 

each input candidate and compressive strength. 

 

 

 

The highest correlation was observed between oven-dry density and CS, with an R2 value of 0.86, indicating 

a strong linear relationship. The cement content input variable also showed a strong positive correlation with 

compressive strength (R2 = 0.63), while the water-to-binder ratio showed a negative correlation (R2 = 0.66). 

The foam content input variable positively correlated with compressive strength (R2 = 0.66).  

Fig. 9. Correlation heatmap between input variables and compressive 

strength. 

Fig. 9 shows the heatmap of the correlation between input parameters and CS. The heatmap shows the 

correlation between the input variables and the compressive strength of the FC. The colour scale on the right 

of the plot shows the correlation strength, with dark blue showing a strong negative correlation and dark red 

indicating a strong positive correlation. As can be seen from the plot, cement content and water-to-binder 

ratio have a strong positive correlation with CS, while oven-dry density has a moderate positive correlation. 

Foam content, on the other hand, has a weak negative correlation with compressive strength. According to 

the findings, the compressive strength improves with increasing cement concentration and water-to-binder 

ratio but decreases with increasing foam content. 

4 | Conclusion 

This study emphasizes the impact of FA and fine LWA additions on the characteristics of FC with a density 

of less than 500 kg/m3. This research investigated the stability and consistency of new concrete and the 

mechanical characteristics and thermal conductivity of hardened concrete. FC may attain much lower 

Input variable r R2 

Cement content 0.79 0.63 
Oven dry density 0.93 0.86 
Water-to-binder ratio -0.81 0.66 
Foam content 0.81 0.66 
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densities (400 to 1400 kg/m3) than normal concrete. The mechanical properties of FC, with its flexural 

strength, compressive strength, and elasticity, were evaluated using a variety of experiments. Due to the 

properties of the LWA, the integration of fine LWA has a substantial effect on the growth of CS while the 

bulk density remains constant. Also, the impact of 25 thawing and freezing cycles on the compressive strength 

was investigated. Therefore, the amount of foaming agent affects the mix density and the density of cured 

FC. The density of FC is inversely proportional to its foam content. Polynomial functions were proposed to 

characterize the correlations between the modulus of elasticity and compressive strength of FC. Adding 5% 

FA to FC marginally lowered its compressive strength and elasticity. The compressive strength of FC exposed 

to freeze-thaw testing is only around 15% lower than that of untreated samples. The thermal conductivity of 

FC is largely determined by its dry density and only secondly by its aggregate composition. Also, the use of 

fine LWA greatly minimizes the drying contraction of FC. The findings of this study reveal that LWA plays 

a crucial role in the fresh and hardened phases of low-density FC stability. 
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