Enhancing Concrete Performance with Waste Rubber: An Artificial Neural Network Approach for Mix Ratio Optimization and Predictive Analysis

Authors

  • Morteza Shariati Department of Civil Engineering Discipline, School of Engineering, Monash University, Melbourne 3800, Australia
  • Mohammad Habibi Department of Civil Engineering, Calut Company Holding, Melbourne 3800, Australia
  • Emad Toghroli Department of Civil Engineering, Calut Company Holding, Melbourne 3800, Australia
  • Maryam Ramezani Department of Civil Engineering, Calut Company Holding, Melbourne 3800, Australia

Keywords:

Concrete, Waste rubber tier, Multiple linear regression, Extreme learning machine

Abstract

Due to its enhanced mechanical qualities and environmental sustainability, waste rubber in concrete materials has attracted more attention. In this investigation, a numerical model was suggested to clarify the effect of rubber tiering on strengths. Given the variety of raw materials available then, changing how concrete works to fit modern development is hard. The standard mixing ratio test method could be replaced with the artificial neural optimization model, and the concrete performance prediction could be realized accurately and quickly. This will allow for the more efficient use of a wide range of complex novel raw materials and improve the concrete mix ratio design method. Evaluating the workability, compressive, splitting, tensile, and bending strengths include replacing rubber waste particles with 10%, 20%, and 30% of aggregates by volume. Data was collected from the literature, and the results were analyzed using an Extreme Learning Machine (ELM) and Multiple Linear Regression (MLR) to accurately evaluate rubberized concrete beams' performance with micro-reinforcement. The results revealed that using rubber waste particles leads to a decline in the weight of the concrete sample and a level of Compressive Strength (CS) compatible with a load-bearing wall. The regression analysis revealed a high correlation between the independent and dependent variables, with R2 values ranging from 0.932 to 0.983 in both the training and testing phases. However, there was higher variability in the test phase, with RSD values ranging from 6.23% to 9.92%, compared to the training phase, with RSD values ranging from 5.12% to 6.77%. The study demonstrated the potential to use waste rubber in concrete composites and the importance of considering the training and test phase results for accurate predictions. Regarding accuracy, both models have relatively high R2 values (0.954 for ELM and 0.943 for MLR), indicating a strong correlation between the independent and dependent variables. However, ELM has a slightly lower RSD (6.88%) than MLR (5.45%). Regarding Mean Relative Error (MRE), both models have similar results (5.12% for ELM and 5.87% for MLR). In terms of time, the ELM model has a much faster running time of 2.45 seconds compared to the MLR model, which takes 28.011 seconds. ELM can make predictions faster than MLR, which could be significant in real-time applications.   

References

‎[1] ‎ Gencel, O., Kazmi, S. M. S., Munir, M. J., Kaplan, G., Bayraktar, O. Y., Yarar, D. O., … & Ahmad, ‎M. R. (2021). Influence of bottom ash and polypropylene fibers on the physico-mechanical, durability and ‎thermal performance of foam concrete: an experimental investigation. Construction and building materials, ‎‎306, 124887. DOI:10.1016/j.conbuildmat.2021.124887‎

‎[2] ‎ Munir, M. J., Kazmi, S. M. S., Wu, Y. F., Patnaikuni, I., Wang, J., & Wang, Q. (2020). Development of a ‎unified model to predict the axial stress–strain behavior of recycled aggregate concrete confined through ‎spiral reinforcement. Engineering structures, 218, 110851. DOI:10.1016/j.engstruct.2020.110851‎

‎[3] ‎ Munir, M. J., Kazmi, S. M. S., Khitab, A., & Hassan, M. (2016). Utilization of rice husk ash to mitigate alkali silica ‎reaction in concrete [presentation]. Proceedings of 2nd international multi-disciplinary conference (Vol. 19, ‎p. 20). University of Lahore, Gujrat Campus Pakistan. http://sites.uol.edu.pk/imdc2016/downloads/civil-‎engineering/Utilization of Rice Husk Ash to Mitigate Alkali Silica Reaction in Concrete.pdf

‎[4] ‎ Torretta, V., Rada, E. C., Ragazzi, M., Trulli, E., Istrate, I. A., & Cioca, L. I. (2015). Treatment and disposal of ‎tyres: two EU approaches. A review. Waste management, 45, 152–160. DOI:10.1016/j.wasman.2015.04.018‎

‎[5] ‎ Toghroli, A., Shariati, M., Sajedi, F., Ibrahim, Z., Koting, S., Mohamad, E. T., & Khorami, M. (2018). A ‎review on pavement porous concrete using recycled waste materials. Smart structures and systems, 22(4), ‎‎433–440. DOI:10.12989/sss.2018.22.4.433‎

‎[6] ‎ Shariati, M., Heirati, A., Zandi, Y., Laka, H., Toghroli, A., Kianmehr, P., … & Poi-Ngian, S. (2019). ‎Application of waste tire rubber aggregate in porous concrete. Smart structures and systems, 24(4), 553–566. ‎DOI:10.12989/sss.2019.24.4.553‎

‎[7] ‎ Toghroli, A., Mehrabi, P., Shariati, M., Trung, N. T., Jahandari, S., & Rasekh, H. (2020). Evaluating the use ‎of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with ‎industrial and recycled fibers. Construction and building materials, 252, 118997. ‎DOI:10.1016/j.conbuildmat.2020.118997‎

‎[8] ‎ Zabaniotou, A. A., Antoniou, N., & Stavropoulos, G. (2015). Novel sorbent materials for environmental ‎remediation via depolymerization of used tyres. Desalination and water treatment, 56(5), 1264–1273. ‎DOI:10.1080/19443994.2014.953210‎

‎[9] ‎ Emiroglu, M., Yildiz, S., & Kelestemur, M. H. (2008). An investigation on ITZ microstructure of the ‎concrete containing waste vehicle tire. Computers and concrete, 5(5), 503-508. ‎https://doi.org/10.12989/cac.2008.5.5.503‎

‎[10] ‎ Asutkar, P., Shinde, S. B., & Patel, R. (2017). Study on the behaviour of rubber aggregates concrete beams ‎using analytical approach. Engineering science and technology, an international journal, 20(1), 151–159. ‎DOI:10.1016/j.jestch.2016.07.007‎

‎[11] ‎ Youssf, O., Hassanli, R., & Mills, J. E. (2017). Mechanical performance of FRP-confined and unconfined ‎crumb rubber concrete containing high rubber content. Journal of building engineering, 11, 115–126. ‎DOI:10.1016/j.jobe.2017.04.011‎

‎[12] ‎ Khatib, Z. K., & Bayomy, F. M. (1999). Rubberized portland cement concrete. Journal of materials in civil ‎engineering, 11(3), 206–213. DOI:10.1061/(asce)0899-1561(1999)11:3(206)‎

‎[13] ‎ Fedroff, D., Ahmad, S., & Savas, B. Z. (1996). Mechanical properties of concrete with ground waste tire ‎rubber. Transportation research record, 1532(1), 66–72. https://doi.org/10.1177/0361198196153200110‎

‎[14] ‎ Eldin, N. N., & Senouci, A. B. (1993). Rubber‐tire particles as concrete aggregate. Journal of materials in civil ‎engineering, 5(4), 478–496. DOI:10.1061/(asce)0899-1561(1993)5:4(478)‎

‎[15] ‎ Hernández-Olivares, F., Barluenga, G., Bollati, M., & Witoszek, B. (2002). Static and dynamic behaviour of ‎recycled tyre rubber-filled concrete. Cement and concrete research, 32(10), 1587–1596. DOI:10.1016/S0008-‎‎8846(02)00833-5‎

‎[16] ‎ Shu, X., & Huang, B. (2014). Recycling of waste tire rubber in asphalt and portland cement concrete: an ‎overview. Construction and building materials, 67(Part B), 217–224. DOI:10.1016/j.conbuildmat.2013.11.027‎

‎[17] ‎ Al-Tayeb, M. M., Bakar, B. H. A., Ismail, H., & Akil, H. M. (2012). Impact resistance of concrete with partial ‎replacements of sand and cement by waste rubber. Polymer-plastics technology and engineering, 51(12), 1230–‎‎1236.‎

‎[18] ‎ Xue, J., & Shinozuka, M. (2013). Rubberized concrete: a green structural material with enhanced energy-‎dissipation capability. Construction and building materials, 42, 196–204. ‎DOI:10.1016/j.conbuildmat.2013.01.005‎

‎[19] ‎ Zheng, L., Huo, X. S., & Yuan, Y. (2008). Experimental investigation on dynamic properties of rubberized ‎concrete. Construction and building materials, 22(5), 939–947. ‎https://doi.org/10.1016/j.conbuildmat.2007.03.005‎

‎[20] ‎ Pacheco-Torgal, F., Ding, Y., & Jalali, S. (2012). Properties and durability of concrete containing polymeric ‎wastes (tyre rubber and polyethylene terephthalate bottles): an overview. Construction and building ‎materials, 30, 714–724. DOI:10.1016/j.conbuildmat.2011.11.047‎

‎[21] ‎ Tayeh, A. I. (2013). Effect of replacement of sand by waste fine crumb rubber on concrete beam subject to ‎impact load: experiment and simulation. Civil and environmental research, 3(13), 165–172.‎

‎[22] ‎ Zhu, X., Miao, C., Liu, J., & Hong, J. (2012). Influence of crumb rubber on frost resistance of concrete and ‎effect mechanism. Procedia engineering, 27, 206–213. DOI:10.1016/j.proeng.2011.12.445‎

‎[23] ‎ Ling, T. C. (2011). Prediction of density and compressive strength for rubberized concrete blocks. ‎Construction and building materials, 25(11), 4303–4306. DOI:10.1016/j.conbuildmat.2011.04.074‎

‎[24] ‎ Najim, K. B., & Hall, M. R. (2012). Mechanical and dynamic properties of self-compacting crumb rubber ‎modified concrete. Construction and building materials, 27(1), 521–530. DOI:10.1016/j.conbuildmat.2011.07.013‎

‎[25] ‎ Ismail, M. K., & Hassan, A. A. A. (2016). Performance of full-scale self-consolidating rubberized concrete ‎beams in flexure. ACI materials journal, 113(2), 207–218. DOI:10.14359/51688640‎

‎[26] ‎ Naderpour, H., & Mirrashid, M. (2018). An innovative approach for compressive strength estimation of ‎mortars having calcium inosilicate minerals. Journal of building engineering, 19, 205–215. ‎DOI:10.1016/j.jobe.2018.05.012‎

‎[27] ‎ Saridemir, M. (2009). Prediction of compressive strength of concretes containing metakaolin and silica ‎fume by artificial neural networks. Advances in engineering software, 40(5), 350–355. ‎DOI:10.1016/j.advengsoft.2008.05.002‎

‎[28] ‎ Sobhani, J., Najimi, M., Pourkhorshidi, A. R., & Parhizkar, T. (2010). Prediction of the compressive ‎strength of no-slump concrete: a comparative study of regression, neural network and ANFIS models. ‎Construction and building materials, 24(5), 709–718. DOI:10.1016/j.conbuildmat.2009.10.037‎

‎[29] ‎ Ince, R. (2004). Prediction of fracture parameters of concrete by artificial neural networks. Engineering ‎fracture mechanics, 71(15), 2143–2159. DOI:10.1016/j.engfracmech.2003.12.004‎

‎[30] ‎ Abu Yaman, M., Abd Elaty, M., & Taman, M. (2017). Predicting the ingredients of self compacting concrete ‎using artificial neural network. Alexandria engineering journal, 56(4), 523–532. DOI:10.1016/j.aej.2017.04.007‎

‎[31] ‎ Uysal, M., & Tanyildizi, H. (2011). Predicting the core compressive strength of self-compacting concrete ‎‎(SCC) mixtures with mineral additives using artificial neural network. Construction and building materials, ‎‎25(11), 4105–4111. DOI:10.1016/j.conbuildmat.2010.11.108‎

‎[32] ‎ Vakhshouri, B., & Nejadi, S. (2016). ANFIS application to predict the compressive strength of lightweight ‎self-compacting concrete. 2016 future technologies conference (FTC) (pp. 28–35). IEEE. ‎https://ieeexplore.ieee.org/abstract/document/7821586‎

‎[33] ‎ Mashhadban, H., Kutanaei, S. S., & Sayarinejad, M. A. (2016). Prediction and modeling of mechanical ‎properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and ‎artificial neural network. Construction and building materials, 119, 277–287. ‎DOI:10.1016/j.conbuildmat.2016.05.034‎

‎[34] ‎ Tu, T. Y., Chen, Y. Y., & Hwang, C. L. (2006). Properties of HPC with recycled aggregates. Cement and ‎concrete research, 36(5), 943–950. DOI:10.1016/j.cemconres.2005.11.022‎

‎[35] ‎ Khan, M. I. (2012). Predicting properties of High Performance Concrete containing composite ‎cementitious materials using artificial neural networks. Automation in construction, 22, 516–524. ‎DOI:10.1016/j.autcon.2011.11.011‎

‎[36] ‎ Prasad, B. K. R., Eskandari, H., & Reddy, B. V. V. (2009). Prediction of compressive strength of SCC and ‎HPC with high volume fly ash using ANN. Construction and building materials, 23(1), 117–128. ‎DOI:10.1016/j.conbuildmat.2008.01.014‎

‎[37] ‎ Bui, D. K., Nguyen, T., Chou, J. S., Nguyen-Xuan, H., & Ngo, T. D. (2018). A modified firefly algorithm-‎artificial neural network expert system for predicting compressive and tensile strength of high-‎performance concrete. Construction and building materials, 180, 320–333. ‎DOI:10.1016/j.conbuildmat.2018.05.201‎

‎[38] ‎ Khosravani, M. R., Nasiri, S., Anders, D., & Weinberg, K. (2019). Prediction of dynamic properties of ultra-‎high performance concrete by an artificial intelligence approach. Advances in engineering software, 127, 51–‎‎58. DOI:10.1016/j.advengsoft.2018.10.002‎

‎[39] ‎ Öztaş, A., Pala, M., Özbay, E., Kanca, E., Çaǧlar, N., & Bhatti, M. A. (2006). Predicting the compressive ‎strength and slump of high strength concrete using neural network. Construction and building materials, ‎‎20(9), 769–775. DOI:10.1016/j.conbuildmat.2005.01.054‎

‎[40] ‎ Chithra, S., Kumar, S. R. R. S., Chinnaraju, K., & Alfin Ashmita, F. (2016). A comparative study on the ‎compressive strength prediction models for High Performance Concrete containing nano silica and ‎copper slag using regression analysis and artificial neural networks. Construction and building materials, ‎‎114, 528–535. DOI:10.1016/j.conbuildmat.2016.03.214‎

‎[41] ‎ Hendi, A., Behravan, A., Mostofinejad, D., Moshtaghi, S. M., & Rezayi, K. (2017). Implementing ANN to ‎minimize sewage systems concrete corrosion with glass beads substitution. Construction and building ‎materials, 138, 441–454. DOI:10.1016/j.conbuildmat.2017.02.034‎

‎[42] ‎ Hodhod, O., & Salama, G. A. (2013). Analysis of sulfate resistance in concrete based on artificial neural ‎networks and USBR4908-modeling. Ain shams engineering journal, 4(4), 651–660. ‎DOI:10.1016/j.asej.2013.02.007‎

‎[43] ‎ Sadrmomtazi, A., Sobhani, J., & Mirgozar, M. A. (2013). Modeling compressive strength of EPS ‎lightweight concrete using regression, neural network and ANFIS. Construction and building materials, 42, ‎‎205–216. DOI:10.1016/j.conbuildmat.2013.01.016‎

‎[44] ‎ Bingöl, A. F., Tortum, A., & Gül, R. (2013). Neural networks analysis of compressive strength of ‎lightweight concrete after high temperatures. Materials and design, 52, 258–264. ‎DOI:10.1016/j.matdes.2013.05.022‎

‎[45] ‎ Altun, F., Kişi, Ö., & Aydin, K. (2008). Predicting the compressive strength of steel fiber added lightweight ‎concrete using neural network. Computational materials science, 42(2), 259–265. ‎DOI:10.1016/j.commatsci.2007.07.011‎

‎[46] ‎ Duan, P., Shui, Z., Chen, W., & Shen, C. (2013). Effects of metakaolin, silica fume and slag on pore ‎structure, interfacial transition zone and compressive strength of concrete. Construction and building ‎materials, 44, 1–6. DOI:10.1016/j.conbuildmat.2013.02.075‎

‎[47] ‎ Deng, F., He, Y., Zhou, S., Yu, Y., Cheng, H., & Wu, X. (2018). Compressive strength prediction of recycled ‎concrete based on deep learning. Construction and building materials, 175, 562–569. ‎DOI:10.1016/j.conbuildmat.2018.04.169‎

‎[48] ‎ Abambres, M., & Lantsoght, E. O. L. (2019). ANN-based fatigue strength of concrete under compression. ‎Materials, 12(22), 3787. DOI:10.3390/ma12223787‎

‎[49] ‎ Getahun, M. A., Shitote, S. M., & Abiero Gariy, Z. C. (2018). Artificial neural network based modelling ‎approach for strength prediction of concrete incorporating agricultural and construction wastes. ‎Construction and building materials, 190, 517–525. DOI:10.1016/j.conbuildmat.2018.09.097‎

‎[50] ‎ Dehghan, S., Sattari, G., Chehreh Chelgani, S., & Aliabadi, M. A. (2010). Prediction of uniaxial compressive ‎strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. ‎Mining science and technology, 20(1), 41–46. DOI:10.1016/S1674-5264(09)60158-7‎

‎[51] ‎ Faridmehr, I., Bedon, C., Huseien, G. F., Nikoo, M., & Baghban, M. H. (2021). Assessment of mechanical ‎properties and structural morphology of alkali-activated mortars with industrial waste materials. ‎Sustainability (Switzerland), 13(4), 1–25. DOI:10.3390/su13042062‎

‎[52] ‎ Shariati, M., Ramli Sulong, N. H., & Arabnejad Khanouki, M. M. (2010). Experimental and analytical study on ‎channel shear connectors in light weight aggregate concrete [presentation]. Proceedings of the 4th international ‎conference on steel composite structures (pp. 21–23). https://eprints.qut.edu.au/196792/‎

‎[53] ‎ Shariati, A., Sulong, N. H., Suhatril, M., & Shariati, M. (2012). Investigation of channel shear connectors for ‎composite concrete and steel T-beam. International journal of the physical sciences, 7(11), Article-number. ‎DOI:10.5897/ijps11.1604‎

‎[54] ‎ Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M., & Shariati, M. (2013). Identification of a ‎suitable ANN architecture in predicting strain in tie section of concrete deep beams. Structural engineering ‎and mechanics, 46(6), 853–868. DOI:10.12989/sem.2013.46.6.853‎

‎[55] ‎ Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M., & Ibrahim, Z. (2014). Prediction of shear ‎capacity of channel shear connectors using the ANFIS model. Steel and composite structures, 17(5), 623–639. ‎DOI:10.12989/scs.2014.17.5.623‎

‎[56] ‎ Paknahad, M., Shariati, M., Sedghi, Y., Bazzaz, M., & Khorami, M. (2018). Shear capacity equation for ‎channel shear connectors in steel-concrete composite beams. Steel and composite structures, 28(4), 483–494. ‎DOI:10.12989/scs.2018.28.4.483‎

‎[57] ‎ Armaghani, D. J., Mirzaei, F., Shariati, M., Trung, N. T., Shariati, M., & Trnavac, D. (2020). Hybrid ann-‎based techniques in predicting cohesion of sandy-soil combined with fiber. Geomechanics and engineering, ‎‎20(3), 191–205. DOI:10.12989/gae.2020.20.3.191‎

‎[58] ‎ Shariati, M., Mafipour, M. S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N. T., & Toghroli, A. (2020). ‎Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (artificial ‎neural network-Genetic Algorithm). Smart structures and systems, 25(2), 183–195. ‎DOI:10.12989/sss.2020.25.2.183‎

‎[59] ‎ Mhaya, A. M., Fahim Huseien, G., Faridmehr, I., Razin Zainal Abidin, A., Alyousef, R., & Ismail, M. (2021). ‎Evaluating mechanical properties and impact resistance of modified concrete containing ground Blast ‎Furnace slag and discarded rubber tire crumbs. Construction and building materials, 295, 123603. ‎DOI:10.1016/j.conbuildmat.2021.123603‎

‎[60] ‎ Golafshani, E. M., & Behnood, A. (2021). Predicting the mechanical properties of sustainable concrete ‎containing waste foundry sand using multi-objective ANN approach. Construction and building materials, ‎‎291, 123314. DOI:10.1016/j.conbuildmat.2021.123314‎

‎[61] ‎ Alabduljabbar, H., Huseien, G. F., Sam, A. R. M., Alyouef, R., Algaifi, H. A., & Alaskar, A. (2020). ‎Engineering properties of waste sawdust-based lightweight alkali-activated concrete: experimental ‎assessment and numerical prediction. Materials, 13(23), 1–30. DOI:10.3390/ma13235490‎

‎[62] ‎ Sadowski, Ł., Piechówka-Mielnik, M., Widziszowski, T., Gardynik, A., & Mackiewicz, S. (2019). Hybrid ‎ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds ‎with high volume of waste quartz mineral dust. Journal of cleaner production, 212, 727–740. ‎DOI:10.1016/j.jclepro.2018.12.059‎

‎[63] ‎ Ray, S., Haque, M., Ahmed, T., & Nahin, T. T. (2023). Comparison of artificial neural network (ANN) and ‎response surface methodology (RSM) in predicting the compressive and splitting tensile strength of ‎concrete prepared with glass waste and tin (Sn) can fiber. Journal of king saud university-engineering sciences, ‎‎35(3), 185–199. https://doi.org/10.1016/j.jksues.2021.03.006‎

‎[64] ‎ Yeşilmen, S., & Tatar, B. (2022). Efficiency of convolutional neural networks (CNN) based image ‎classification for monitoring construction related activities: a case study on aggregate mining for concrete ‎production. Case studies in construction materials, 17, e01372. DOI:10.1016/j.cscm.2022.e01372‎

‎[65] ‎ Almasaeid, H. H., Suleiman, A., & Alawneh, R. (2022). Assessment of high-temperature damaged concrete ‎using non-destructive tests and artificial neural network modelling. Case studies in construction materials, ‎‎16, e01080. DOI:10.1016/j.cscm.2022.e01080‎

‎[66] ‎ Toghroli, A., Shariati, M., Rehan, M., & Ibrahim, Z. (2017). Investigation on composite polymer and silica fume ‎rubber aggregate pervious concrete [presentation]. Proceedings of the 5th international conference on ‎advances in civil, structural and mechanical engineering-CSM (pp. 95–99). DOI: 10.15224/978-1-63248-132-‎‎0-56‎

‎[67] ‎ Li, D., Toghroli, A., Shariati, M., Sajedi, F., Bui, D. T., Kianmehr, P., … & Khorami, M. (2019). Application ‎of polymer, silica-fume and crushed rubber in the production of Pervious concrete. Smart structures and ‎systems, 23(2), 207–214. DOI:10.12989/sss.2019.23.2.207‎

‎[68] ‎ Rajaei, S., Shoaei, P., Shariati, M., Ameri, F., Musaeei, H. R., Behforouz, B., & de Brito, J. (2021). Rubberized ‎alkali-activated slag mortar reinforced with polypropylene fibres for application in lightweight thermal ‎insulating materials. Construction and building materials, 270. DOI:10.1016/j.conbuildmat.2020.121430‎

‎[69] ‎ Topçu, I. B., & Saridemir, M. (2008). Prediction of rubberized concrete properties using artificial neural ‎network and fuzzy logic. Construction and building materials, 22(4), 532–540. ‎DOI:10.1016/j.conbuildmat.2006.11.007‎

‎[70] ‎ Bachir, R., Mohammed, A. M. S., & Habib, T. (2018). Using artificial neural networks approach to estimate ‎compressive strength for rubberized concrete. Periodica polytechnica civil engineering, 62(4), 858–865. ‎DOI:10.3311/PPci.11928‎

‎[71] ‎ Jalal, M., Nassir, N., Jalal, H., & Arabali, P. (2019). On the strength and pulse velocity of rubberized ‎concrete containing silica fume and zeolite: Prediction using multivariable regression models. ‎Construction and building materials, 223, 530–543. DOI:10.1016/j.conbuildmat.2019.06.233‎

‎[72] ‎ Jalal, M., Arabali, P., Grasley, Z., Bullard, J. W., & Jalal, H. (2020). Behavior assessment, regression analysis ‎and support vector machine (SVM) modeling of waste tire rubberized concrete. Journal of cleaner ‎production, 273. DOI:10.1016/j.jclepro.2020.122960‎

‎[73] ‎ Cheng, M. Y., & Cao, M. T. (2016). Estimating strength of rubberized concrete using evolutionary ‎multivariate adaptive regression splines. Journal of civil engineering and management, 22(5), 711–720. ‎DOI:10.3846/13923730.2014.897989‎

‎[74] ‎ Habib, A., & Yıldırım, U. (2021). Prediction of the dynamic properties in rubberized concrete. Computers ‎and concrete, 27(3), 185–197. DOI:10.12989/cac.2021.27.3.185‎

‎[75] ‎ David J. Olive. (2010). Multiple linear and 1D regression. Southern illinois university, carbondale, united states, ‎‎641. http://parker.ad.siu.edu/Olive/rrun.pdf‎

‎[76] ‎ Darwin, D., Dolan, C. W., & Nilson, A. H. (2016). Design of concrete structures (Vol. 2). McGraw-Hill ‎Education New York, NY, USA:‎

‎[77] ‎ Harirchian, E., Kumari, V., Jadhav, K., Raj Das, R., Rasulzade, S., & Lahmer, T. (2020). A machine learning ‎framework for assessing seismic hazard safety of reinforced concrete buildings. Applied sciences, 10(20), ‎‎7153.‎

‎[78] ‎ Martínez-Álvarez, F., Schmutz, A., Asencio-Cortés, G., & Jacques, J. (2019). A novel hybrid algorithm to ‎forecast functional time series based on pattern sequence similarity with application to electricity ‎demand. Energies, 12(1), 94. DOI:10.3390/en12010094‎

‎[79] ‎ Ahmad, M., Hu, J. L., Hadzima-Nyarko, M., Ahmad, F., Tang, X. W., Rahman, Z. U., … & Abrar, M. (2021). ‎Rockburst hazard prediction in underground projects using two intelligent classification techniques: a ‎comparative study. Symmetry, 13(4), 632. DOI:10.3390/sym13040632‎

‎[80] ‎ Zhu, S., Lu, H., Ptak, M., Dai, J., & Ji, Q. (2020). Lake water-level fluctuation forecasting using machine ‎learning models: a systematic review. Environmental science and pollution research, 27(36), 44807–44819. ‎DOI:10.1007/s11356-020-10917-7‎

‎[81] ‎ Naderpour, H., & Mirrashid, M. (2020). Proposed soft computing models for moment capacity prediction ‎of reinforced concrete columns. Soft computing, 24(15), 11715–11729. DOI:10.1007/s00500-019-04634-8‎

‎[82] ‎ Lin, C. J., & Wu, N. J. (2021). An ann model for predicting the compressive strength of concrete. Applied ‎sciences (Switzerland), 11(9), 3798. DOI:10.3390/app11093798‎

‎[83] ‎ Ahmad, M., Hu, J. L., Ahmad, F., Tang, X. W., Amjad, M., Iqbal, M. J., … & Farooq, A. (2021). Supervised ‎learning methods for modeling concrete compressive strength prediction at high temperature. Materials, ‎‎14(8), 1983. DOI:10.3390/ma14081983‎

‎[84] ‎ Aalimahmoody, N., Bedon, C., Hasanzadeh-Inanlou, N., Hasanzade-Inallu, A., & Nikoo, M. (2021). Bat ‎algorithm-based ann to predict the compressive strength of concrete—a comparative study. ‎Infrastructures, 6(6), 80. DOI:10.3390/infrastructures6060080‎

‎[85] ‎ Nikoo, M., Torabian Moghadam, F., & Sadowski, Ł. (2015). Prediction of concrete compressive strength by ‎evolutionary artificial neural networks. Advances in materials science and engineering, 2015. ‎DOI:10.1155/2015/849126‎

‎[86] ‎ Hadzima-Nyarko, M., Nyarko, E. K., Ademović, N., Miličević, I., & Kalman Šipoš, T. (2019). Modelling the ‎influence of waste rubber on compressive strength of concrete by artificial neural networks. Materials, ‎‎12(4), 561. https://doi.org/10.3390/ma12040561‎

‎[87] ‎ Diaconescu, R. M., Barbuta, M., & Harja, M. (2013). Prediction of properties of polymer concrete composite ‎with tire rubber using neural networks. Materials science and engineering: B, 178(19), 1259–1267. ‎DOI:10.1016/j.mseb.2013.01.014‎

‎[88] ‎ Abdollahzadeh, A., Masoudnia, R., & Aghababaei, S. (2011). Predict strength of rubberized concrete using ‎atrificial neural network. WSEAS transactions on computers, 10(2), 31–40.‎

‎[89] ‎ Nguyen, H., & Bui, X. N. (2019). Predicting blast-induced air overpressure: a robust artificial intelligence ‎system based on artificial neural networks and random forest. Natural resources research, 28(3), 893–907. ‎DOI:10.1007/s11053-018-9424-1‎

‎[90] ‎ Ahmadi-Nedushan, B. (2012). An optimized instance based learning algorithm for estimation of ‎compressive strength of concrete. Engineering applications of artificial intelligence, 25(5), 1073–1081. ‎DOI:10.1016/j.engappai.2012.01.012‎

‎[91] ‎ Chopra, P., Sharma, R. K., Kumar, M., & Chopra, T. (2018). Comparison of machine learning techniques ‎for the prediction of compressive strength of concrete. Advances in civil engineering, 2018. ‎https://doi.org/10.1155/2018/5481705‎

‎[92] ‎ Huang, G. Bin, Chen, L., & Siew, C. K. (2006). Universal approximation using incremental constructive ‎feedforward networks with random hidden nodes. IEEE transactions on neural networks, 17(4), 879–892. ‎DOI:10.1109/TNN.2006.875977‎

‎[93] ‎ Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. ‎Neurocomputing, 70(1–3), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126‎

‎[94] ‎ Huang, G., Song, S., Gupta, J. N. D., & Wu, C. (2014). Semi-supervised and unsupervised extreme learning ‎machines. IEEE transactions on cybernetics, 44(12), 2405–2417. DOI:10.1109/TCYB.2014.2307349‎

‎[95] ‎ Huang, G. Bin, Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for regression and ‎multiclass classification. IEEE transactions on systems, man, and cybernetics, part b: cybernetics, 42(2), 513–529. ‎DOI:10.1109/TSMCB.2011.2168604‎

‎[96] ‎ Rong, H. J., Jia, Y. X., & Zhao, G. S. (2014). Aircraft recognition using modular extreme learning machine. ‎Neurocomputing, 128, 166–174. DOI:10.1016/j.neucom.2012.12.064‎

‎[97] ‎ Zong, W., & Huang, G. B. (2011). Face recognition based on extreme learning machine. Neurocomputing, ‎‎74(16), 2541–2551. https://doi.org/10.1016/j.neucom.2010.12.041‎

‎[98] ‎ Liao, S., & Feng, C. (2014). Meta-ELM: ELM with ELM hidden nodes. Neurocomputing, 128, 81–87. ‎DOI:10.1016/j.neucom.2013.01.060‎

‎[99] ‎ Costa, L. A. L. F. d., Kunst, R., & de Freitas, E. P. (2022). Intelligent resource sharing to enable quality of ‎service for network clients: the trade-off between accuracy and complexity. Computing, 104(5), 1219–1231. ‎DOI:10.1007/s00607-021-01042-5‎

‎[100] ‎ Janani, S., & Santhi, A. S. (2018). Multiple linear regression model for mechanical properties and impact ‎resistance of concrete with fly ash and hooked-end steel fibers. International journal of technology, 9(3), 526–‎‎536. DOI:10.14716/ijtech.v9i3.763‎

Published

2024-04-07

How to Cite

Enhancing Concrete Performance with Waste Rubber: An Artificial Neural Network Approach for Mix Ratio Optimization and Predictive Analysis. (2024). International Journal of Researches on Civil Engineering With Artificial Intelligence , 1(1), 21-39. https://ceai.reapress.com/journal/article/view/19

Similar Articles

You may also start an advanced similarity search for this article.