Microseismic Monitoring System for the Management of Seismic Hazard and Rock Bursting and Distribution of Crack

Authors

  • Emad Toghroli Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. ‎
  • Meldi Suhatril Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. ‎
  • Fatemeh Moeini Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. ‎
  • Salman Maleki Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia. ‎

Keywords:

Energy storage rate, Energy waste‎, Distribution of rockburst‎, Triaxial compressive test

Abstract

Rockburst is one of the most significant risks that threaten the safety of underground and surface stability and mine operators. Few methods have been generated to evaluate rockburst potential in underground hard rock mines depending on Energy Release Rate (ERR), energy balance, and critical energy and strain Energy Storage Rate (ESR). In this research, a Peak Strength Strain (PSS) of ESR is suggested to estimate and categorize the tendency of rock materials to burst into granite. The energy storage rate index is the elastic Strain Energy Density (SED) rate to the dissipated SED correlated to the peak Compressive Strength (CS) on granite under four orders of magnitude loading ratio. Accordingly, a triaxial unloading limited pressure test was conducted to provide the linear elastic ESR characteristics. Through the use of the Q system, an empirical analysis was performed to check the ratio of  to estimate the rockburst. Thus, a twenty-day delay in strain monitoring further changed the PS energy. The findings indicated that the PS energy is roughly 1.3–1.4 times greater than the linear elastic Strain Energy (SE) under the same limited pressure. The deep granite's modified maximum SE value was substantially raised when the time-delay strain effect was considered. The peak strength energy values were raised from 1.0 × 104 J/m3 to 1.8 × 104 J/m3, respectively. Also, the intensity and tendency of rockburst were compared while considering the benefits of the SE index model of rockburst. The primary stress point under various limited pressures was estimated, and the linear elastic SE of deep granite was computed. The test findings show that the linear elastic SED value exhibits a linear growth rule when limited pressure increases. Besides, due to the limited pressure of , the linear elastic SED value of granite is near to . The rock burst grades provided a clear incline ratio after considering the time delay of SE and PS energy. The SED is raised by , under the  limited pressure. A proper SE technique could bring precise data support for rockburst analysis.

References

‎[1] ‎ He, M. C., Miao, J. L., & Feng, J. L. (2010). Rock burst process of limestone and its acoustic emission ‎characteristics under true-triaxial unloading conditions. International journal of rock mechanics and mining ‎sciences, 47(2), 286–298. https://doi.org/10.1016/j.ijrmms.2009.09.003‎

‎[2] ‎ Morrison, R. G. K. (1942). Report on the rockburst situation in Ontario mines. Trans. canadian institute of ‎mining and metallurgy, 45, 225–272.‎

‎[3] ‎ Kaiser, P. K., Mccreath, D. R., & Tannant, D. D. (1995). Canadian rockburst research program. Camiro ‎mining division. https://search.worldcat.org/title/Canadian-rockburst-research-program-1990-1995-:-a-‎comprehensive-summary-of-five-years-of-collaborative-research-on-rockbursting-in-hardrock-‎mines/oclc/64385143‎

‎[4] ‎ Li, C. C. (2017). Principles of rockbolting design. Journal of rock mechanics and geotechnical engineering, 9(3), ‎‎396–414. https://doi.org/10.1016/j.jrmge.2017.04.002‎

‎[5] ‎ Kaiser, P. K. (2018). Chapter 15 - excavation vulnerability and selection of effective rock support to ‎mitigate rockburst damage. In Rockburst mechanisms, monitoring, warning, and mitigation (pp. 473–518). ‎Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805054-5.00015-9‎

‎[6] ‎ Salamon, M. D. G. (1983). Rockburst hazard and the fight for its alleviation in south african gold mines. ‎Rockbursts: prediction and control. symposium (pp. 11–36). Institution of mining and metallurgy. ‎http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8453776‎

‎[7] ‎ Duvall, W. I., & Stephenson, D. E. (1965). Seismic energy available from rockbursts and underground ‎explosions. Trans. soc. min. eng, 232(3), 235–240.‎

‎[8] ‎ Ortlepp, W. D. (1997). Rock fracture and rockbursts: an illustrative study (Vol. 9). South African Institute of ‎Mining and Metallurgy. ‎https://www.google.com/books/edition/Rock_Fracture_and_Rockbursts/tYQQAQAAMAAJ?hl=en

‎[9] ‎ Shan, Z., & Yan, P. (2010). Management of rock bursts during excavation of the deep tunnels in Jinping II ‎Hydropower Station. Bulletin of engineering geology and the environment, 69(3), 353–363. ‎DOI:10.1007/s10064-010-0266-2‎

‎[10] Tarasov, B. G., & Stacey, T. R. (2017). Features of the energy balance and fragmentation mechanisms at ‎spontaneous failure of class I and class II rocks. Rock mechanics and rock engineering, 50(10), 2563–2584. ‎DOI:10.1007/s00603-017-1251-x

‎[11] ‎ Feng, X. T., Chen, B. R., Ming, H. J., Wu, S. Y., Xiao, Y. X., Feng, G. L., … & Qiu, S. L. (2012). Evolution ‎law and mechanism of rockbursts in deep tunnels: immediate rockburst. Chinese journal of rock mechanics ‎and engineering, 31(3), 433–444.‎

‎[12] ‎ Feng, X. T., Xiao, Y. X., Feng, G., Chen, B. R., & Li, S. (2018). Successful examples for mitigating ‎rockbursts in Jinping II tunnels, China. Rockburst: mechanisms, monitoring, warning and mitigation. Elsevier, ‎‎519–539.‎

‎[13] ‎ Su, G., Feng, X., Wang, J., Jiang, J., & Hu, L. (2017). Experimental study of remotely triggered rockburst ‎induced by a tunnel axial dynamic disturbance under true-triaxial conditions. Rock mechanics and rock ‎engineering, 50(8), 2207–2226. DOI:10.1007/s00603-017-1218-y

‎[14] ‎ Jager, A. J. (1992). Two new support units for the control of rockburst damage. International symposium on ‎rock support (pp. 621–631). A.A. Balkema, Rotterdam. http://pascal-‎francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6463792‎

‎[15] ‎ Simser, B., Andrieux, P., Langevin, F., Parrott, T., & Turcotte, P. (2006). Field behaviour and failure ‎modes of modified conebolts at the Craig, LaRonde and Brunswick Mines in Canada. Deep and high ‎stress mining, 2(3), 59-64.‎

‎[16] ‎ He, M., Gong, W., Wang, J., Qi, P., Tao, Z., Du, S., & Peng, Y. (2014). Development of a novel energy-‎absorbing bolt with extraordinarily large elongation and constant resistance. International journal of rock ‎mechanics and mining sciences, 67, 29–42. https://doi.org/10.1016/j.ijrmms.2014.01.007‎

‎[17] ‎ Varden, R., Lachenicht, R., Player, J., Thompson, A., & Villaescusa, E. (2008). Development and ‎implementation of the garford dynamic bolt at the kanowna belle mine. 10th underground operators' ‎conference (pp. 95–102). The Australian institute of mining and metallurgy launceston, australia.‎

‎[18] ‎ Darlington, B., Rataj, M., Balog, G., & Barnett, D. (2018). Development of the MDX bolt and in-situ ‎dynamic testing at telfer Gold mine. In Rock dynamics–experiments, theories and applications (pp. 403–408), ‎CRC Press.‎

‎[19] ‎ Wu, Y. K., & Oldsen, J. (2010). Development of a new yielding rock bolt-yield-lok bolt. 44th us rock ‎mechanics symposium and 5th us-canada rock mechanics symposium (pp. 10-197). OnePetro. ‎https://onepetro.org/ARMAUSRMS/proceedings-abstract/ARMA10/All-ARMA10/119456‎

‎[20] ‎ Chunlin Li, C. (2010). A new energy-absorbing bolt for rock support in high stress rock masses. ‎International journal of rock mechanics and mining sciences, 47(3), 396–404. ‎https://doi.org/10.1016/j.ijrmms.2010.01.005‎

‎[21] ‎ Knox, G & Berghorst, A. (2019). Dynamic testing: determining the residual dynamic capacity of an ‎axially strained tendon, In Ground support 2019: proceedings of the ninth international symposium on ground ‎support in mining and underground construction (pp. 231-242). Australian Centre for ‎Geomechanics. https://doi.org/10.36487/ACG_rep/1925_14_Knox

‎[22] ‎ Manchao, H., Leal e Sousa, R., Müller, A., Vargas, E., Ribeiro e Sousa, L., & Xin, C. (2015). Analysis of ‎excessive deformations in tunnels for safety evaluation. Tunnelling and underground space technology, 45, ‎‎190–202. https://doi.org/10.1016/j.tust.2014.09.006‎

‎[23] ‎ Wu, Z., Wu, S., & Cheng, Z. (2020). Discussion and application of a risk assessment method for spalling ‎damage in a deep hard-rock tunnel. Computers and geotechnics, 124, 103632. ‎https://doi.org/10.1016/j.compgeo.2020.103632‎

‎[24] ‎ Li, C. C. (2021). Principles and methods of rock support for rockburst control. Journal of rock mechanics ‎and geotechnical engineering, 13(1), 46–59. https://doi.org/10.1016/j.jrmge.2020.11.001‎

‎[25] ‎ Miao, S. J., Cai, M. F., Guo, Q. F., & Huang, Z. J. (2016). Rock burst prediction based on in-situ stress and ‎energy accumulation theory. International journal of rock mechanics and mining sciences, 83, 86–94. ‎https://doi.org/10.1016/j.ijrmms.2016.01.001‎

‎[26] ‎ Li, P., Cai, M., Guo, Q., & Miao, S. (2019). In situ stress state of the northwest region of the jiaodong ‎peninsula, china from overcoring stress measurements in three gold mines. Rock mechanics and rock ‎engineering, 52(11), 4497–4507. DOI:10.1007/s00603-019-01827-3‎

‎[27] ‎ Feng, F., Li, X., Rostami, J., & Li, D. (2019). Modeling hard rock failure induced by structural planes ‎around deep circular tunnels. Engineering fracture mechanics, 205, 152–174. ‎https://doi.org/10.1016/j.engfracmech.2018.10.010‎

‎[28] ‎ Wei, C., Zhang, C., Canbulat, I., & Huang, W. (2021). Numerical investigation into impacts of major ‎fault on coal burst in longwall mining – a case study. International journal of rock mechanics and mining ‎sciences, 147, 104907. https://doi.org/10.1016/j.ijrmms.2021.104907‎

‎[29] ‎ Feng, F., Li, X., Rostami, J., Peng, D., Li, D., & Du, K. (2019). Numerical investigation of hard rock ‎strength and fracturing under polyaxial compression based on Mogi-Coulomb failure criterion. ‎International journal of geomechanics, 19(4), 4019005.‎

‎[30] ‎ Xiao, P., Li, D., Zhao, G., & Liu, H. (2021). New criterion for the spalling failure of deep rock ‎engineering based on energy release. International journal of rock mechanics and mining sciences, 148, ‎‎104943. https://doi.org/10.1016/j.ijrmms.2021.104943‎

‎[31] ‎ Gong, F., Yan, J., Li, X., & Luo, S. (2019). A peak-strength strain energy storage index for rock burst ‎proneness of rock materials. International journal of rock mechanics and mining sciences, 117, 76–89. ‎https://doi.org/10.1016/j.ijrmms.2019.03.020‎

‎[32] ‎ Jiang, Q., Feng, X.-T., Xiang, T.-B., & Su, G.-S. (2010). Rockburst characteristics and numerical simulation ‎based on a new energy index: a case study of a tunnel at 2,500 m depth. Bulletin of engineering geology and ‎the environment, 69(3), 381–388. DOI:10.1007/s10064-010-0275-1‎

‎[33] ‎ Xiao, P., Li, D., Zhao, G., Zhu, Q., Liu, H., & Zhang, C. (2020). Mechanical properties and failure behavior ‎of rock with different flaw inclinations under coupled static and dynamic loads. Journal of central south ‎university, 27(10), 2945–2958. DOI:10.1007/s11771-020-4520-x

‎[34] ‎ Qiu, J., Li, X., Li, D., Zhao, Y., Hu, C., & Liang, L. (2021). Physical model test on the deformation ‎behavior of an underground tunnel under blasting disturbance. Rock mechanics and rock engineering, 54(1), ‎‎91–108. DOI:10.1007/s00603-020-02249-2‎

‎[35] ‎ Zhou, Z., Cai, X., Li, X., Cao, W., & Du, X. (2020). Dynamic response and energy evolution of sandstone ‎under coupled static–dynamic compression: insights from experimental study into deep rock ‎engineering applications. Rock mechanics and rock engineering, 53(3), 1305–1331. DOI:10.1007/s00603-019-‎‎01980-9‎

‎[36] ‎ Han, Z., Li, D., Zhou, T., Zhu, Q., & Ranjith, P. G. (2020). Experimental study of stress wave propagation ‎and energy characteristics across rock specimens containing cemented mortar joint with various ‎thicknesses. International journal of rock mechanics and mining sciences, 131, 104352. ‎https://doi.org/10.1016/j.ijrmms.2020.104352‎

‎[37] ‎ Qiu, S., Feng, X., Zhang, C., & Xiang, T. (2014). Estimation of rockburst wall-rock velocity invoked by ‎slab flexure sources in deep tunnels. Canadian geotechnical journal, 51(5), 520–539.‎

‎[38] ‎ He, B. G., Zelig, R., Hatzor, Y. H., & Feng, X. T. (2016). Rockburst generation in discontinuous rock ‎masses. Rock mechanics and rock engineering, 49(10), 4103–4124. DOI:10.1007/s00603-015-0906-8‎

‎[39] ‎ Skrzypkowski, K. (2020). Case studies of rock bolt support loads and rock mass monitoring for the ‎room and pillar method in the Legnica-Głogów copper district in poland. Energies, 13(11), 2998. ‎https://www.mdpi.com/1996-1073/13/11/2998‎

‎[40] ‎ Jiang, J., Su, G., Zhang, X., & Feng, X.-T. (2020). Effect of initial damage on remotely triggered rockburst ‎in granite: an experimental study. Bulletin of engineering geology and the environment, 79(6), 3175–3194. ‎DOI:10.1007/s10064-020-01760-8‎

‎[41] ‎ Rui, Y., Zhou, Z., Lu, J., Ullah, B., & Cai, X. (2022). A novel AE source localization method using ‎clustering detection to eliminate abnormal arrivals. International journal of mining science and technology, ‎‎32(1), 51–62. https://doi.org/10.1016/j.ijmst.2021.11.004‎

‎[42] ‎ Read, R. S. (2004). 20 years of excavation response studies at AECL's underground research laboratory. ‎International journal of rock mechanics and mining sciences, 41(8), 1251–1275. ‎https://doi.org/10.1016/j.ijrmms.2004.09.012‎

‎[43] ‎ Kang, S. S., Ishiguro, Y., & Obara, Y. (2006). Evaluation of core disking rock stress and tensile strength ‎via the compact conical-ended borehole overcoring technique. International journal of rock mechanics and ‎mining sciences, 43(8), 1226–1240. https://doi.org/10.1016/j.ijrmms.2006.04.007‎

‎[44] ‎ Hu, X., Su, G., Chen, G., Mei, S., Feng, X., Mei, G., & Huang, X. (2019). Experiment on rockburst process ‎of borehole and its acoustic emission characteristics. Rock mechanics and rock engineering, 52(3), 783–802. ‎DOI:10.1007/s00603-018-1613-z

‎[45] ‎ Gong, F., Wuxing, W., Tianbin, L., & Xuefeng, S. (2019). Experimental simulation and investigation of ‎spalling failure of rectangular tunnel under different three-dimensional stress states. International journal ‎of rock mechanics and mining sciences, 122, 104081. https://doi.org/10.1016/j.ijrmms.2019.104081‎

‎[46] ‎ Qiu, P., Ning, J., Wang, J., Hu, S., & Li, Z. (2021). Mitigating rock burst hazard in deep coal mines insight ‎from dredging concentrated stress: a case study. Tunnelling and underground space technology, 115, 104060. ‎https://doi.org/10.1016/j.tust.2021.104060‎

‎[47] ‎ Tao, M., Li, X., & Li, D. (2013). Rock failure induced by dynamic unloading under 3D stress state. ‎Theoretical and applied fracture mechanics, 65, 47–54. https://doi.org/10.1016/j.tafmec.2013.05.007‎

‎[48] ‎ Feng, F., Li, X., Luo, L., Zhao, X., Chen, S., Jiang, N., … & Wang, Y. (2021). Rockburst response in hard ‎rock owing to excavation unloading of twin tunnels at great depth. Bulletin of engineering geology and the ‎environment, 80(10), 7613–7631. DOI:10.1007/s10064-021-02377-1‎

‎[49] ‎ Ren, F., Chang, Y., & He, M. (2020). A systematic analysis method for rock failure mechanism under ‎stress unloading conditions: a case of rock burst. Environmental earth sciences, 79(15), 370. ‎DOI:10.1007/s12665-020-09111-2‎

‎[50] ‎ Huang, R. Q., Wang, X. N., & Chan, L. S. (2001). Triaxial unloading test of rocks and its implication for ‎rock burst. Bulletin of engineering geology and the environment, 60(1), 37–41. DOI:10.1007/s100640000082‎

‎[51] ‎ Su, G., Hu, L., Feng, X., Wang, J., & Zhang, X. (2016). True triaxial experimental study of rockburst ‎process under low frequency cyclic disturbance load combined with static load. Rock mechanics engineer, ‎‎35, 1309–1322.‎

‎[52] ‎ Tarasov, B., & Potvin, Y. (2013). Universal criteria for rock brittleness estimation under triaxial ‎compression. International journal of rock mechanics and mining sciences, 59, 57–69. ‎https://doi.org/10.1016/j.ijrmms.2012.12.011‎

‎[53] ‎ Bésuelle, P., Desrues, J., & Raynaud, S. (2000). Experimental characterisation of the localisation ‎phenomenon inside a Vosges sandstone in a triaxial cell. International journal of rock mechanics and mining ‎sciences, 37(8), 1223–1237. https://doi.org/10.1016/S1365-1609(00)00057-5‎

‎[54] ‎ Wawersik, W. R., & Fairhurst, C. (1970). A study of brittle rock fracture in laboratory compression ‎experiments. International journal of rock mechanics and mining sciences & geomechanics abstracts, 7(5), 561–‎‎575. https://doi.org/10.1016/0148-9062(70)90007-0‎

‎[55] ‎ Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., Shao, S., Chen, B. K., Lashin, A., … & Rathnaweera, T. D. ‎‎(2017). Mechanical behaviour of Australian Strathbogie granite under in-situ stress and temperature ‎conditions: an application to geothermal energy extraction. Geothermics, 65, 44–59. ‎https://doi.org/10.1016/j.geothermics.2016.07.002‎

‎[56] ‎ Gautam, P. K., Verma, A. K., Jha, M. K., Sharma, P., & Singh, T. N. (2018). Effect of high temperature on ‎physical and mechanical properties of Jalore granite. Journal of applied geophysics, 159, 460–474. ‎https://doi.org/10.1016/j.jappgeo.2018.07.018‎

‎[57] ‎ Li, T. B., Pan, H. S., Chen, G. Q., & Meng, L. B. (2018). Physical model tests on thermomechanical effects ‎in rockbursts around tunnels. Rock mechanics engineer, 37(2), 261-273.‎

‎[58] ‎ Yan, J., He, C., Wang, B., & Meng, W. (2019). Influence of high geotemperature on rockburst occurrence ‎in tunnel. Rock soil mech, 40(4), 1543–1550.‎

‎[59] ‎ Akdag, S., Karakus, M., Taheri, A., Nguyen, G., & Manchao, H. (2018). Effects of thermal damage on ‎strain burst mechanism for brittle rocks under true-triaxial loading conditions. Rock mechanics and rock ‎engineering, 51(6), 1657–1682. DOI:10.1007/s00603-018-1415-3‎

‎[60] ‎ Su, G., Chen, Z., Ju, J. W., & Jiang, J. (2017). Influence of temperature on the strainburst characteristics of ‎granite under true triaxial loading conditions. Engineering geology, 222, 38–52. ‎https://doi.org/10.1016/j.enggeo.2017.03.021‎

‎[61] ‎ He, M., Xia, H., Jia, X., Gong, W., Zhao, F., & Liang, K. (2012). Studies on classification, criteria and ‎control of rockbursts. Journal of rock mechanics and geotechnical engineering, 4(2), 97–114. ‎https://doi.org/10.3724/SP.J.1235.2012.00097‎

‎[62] ‎ Li, S., Feng, X. T., Li, Z., Chen, B., Zhang, C., & Zhou, H. (2012). In situ monitoring of rockburst ‎nucleation and evolution in the deeply buried tunnels of Jinping II hydropower station. Engineering ‎geology, 137–138, 85–96. https://doi.org/10.1016/j.enggeo.2012.03.010‎

‎[63] ‎ Li, X., Gong, F., Tao, M., Dong, L., Du, K., Ma, C., … & Yin, T. (2017). Failure mechanism and coupled ‎static-dynamic loading theory in deep hard rock mining: A review. Journal of rock mechanics and ‎geotechnical engineering, 9(4), 767–782. https://doi.org/10.1016/j.jrmge.2017.04.004‎

‎[64] ‎ Kaiser, P. K., & Cai, M. (2012). Design of rock support system under rockburst condition. Journal of rock ‎mechanics and geotechnical engineering, 4(3), 215–227. https://doi.org/10.3724/SP.J.1235.2012.00215‎

‎[65] ‎ Kidybiński, A. (1981). Bursting liability indices of coal. International journal of rock mechanics and mining ‎sciences & geomechanics abstracts, 18(4), 295–304. https://doi.org/10.1016/0148-9062(81)91194-3‎

‎[66] ‎ Gong, F., Luo, S., & Yan, J. (2018). Energy storage and dissipation evolution process and characteristics ‎of marble in three tension-type failure tests. Rock mechanics and rock engineering, 51(11), 3613–3624. ‎DOI:10.1007/s00603-018-1564-4‎

‎[67] ‎ Wang, J. A., & Park, H. D. (2001). Comprehensive prediction of rockburst based on analysis of strain ‎energy in rocks. Tunnelling and underground space technology, 16(1), 49–57. https://doi.org/10.1016/S0886-‎‎7798(01)00030-X

‎[68] ‎ Xu, L., Gong, F., & Luo, S. (2021). Effects of pre-existing single crack angle on mechanical behaviors and ‎energy storage characteristics of red sandstone under uniaxial compression. Theoretical and applied ‎fracture mechanics, 113, 102933. https://doi.org/10.1016/j.tafmec.2021.102933‎

‎[69] ‎ Leveille, P., Sepehri, M., & Apel, D. B. (2017). Rockbursting potential of kimberlite: a case study of ‎diavik diamond mine. Rock mechanics and rock engineering, 50(12), 3223–3231. DOI:10.1007/s00603-017-‎‎1294-z

‎[70] ‎ Chen, G., Li, T., Zhang, G., Yin, H., & Zhang, H. (2014). Temperature effect of rock burst for hard rock in ‎deep-buried tunnel. Natural hazards, 72(2), 915–926. DOI:10.1007/s11069-014-1042-6‎

‎[71] ‎ Sepehri, M., Apel, D. B., Adeeb, S., Leveille, P., & Hall, R. A. (2020). Evaluation of mining-induced ‎energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite ‎element model. Engineering geology, 266, 105457. https://doi.org/10.1016/j.enggeo.2019.105457‎

‎[72] ‎ He, Z., Gong, F., Wu, W., & Wang, W. (2021). Experimental investigation of the mechanical behaviors ‎and energy evolution characteristics of red sandstone specimens with holes under uniaxial ‎compression. Bulletin of engineering geology and the environment, 80(7), 5845–5865. DOI:10.1007/s10064-021-‎‎02260-z

‎[73] ‎ Cook, N. G. W. (1976). Seismicity associated with mining. Engineering geology, 10(2), 99–122. ‎https://doi.org/10.1016/0013-7952(76)90015-6‎

‎[74] ‎ Srinivasan, C., Arora, S. K., & Yaji, R. K. (1997). Use of mining and seismological parameters as ‎premonitors of rockbursts. International journal of rock mechanics and mining sciences, 34(6), 1001–1008. ‎https://doi.org/10.1016/S1365-1609(97)80009-3‎

‎[75] ‎ Grodner, M. (2001). Delineation of rockburst fractures with ground penetrating radar in the ‎Witwatersrand Basin, South Africa. International journal of rock mechanics and mining sciences, 38(6), 885–‎‎891. https://doi.org/10.1016/S1365-1609(01)00054-5‎

‎[76] ‎ He, M., e Sousa, L. R., Miranda, T., & Zhu, G. (2015). Rockburst laboratory tests database — application ‎of data mining techniques. Engineering geology, 185, 116–130. https://doi.org/10.1016/j.enggeo.2014.12.008‎

‎[77] ‎ Malan, D. F., & Napier, J. A. L. (2018). Rockburst support in shallow-dipping tabular stopes at great ‎depth. International journal of rock mechanics and mining sciences, 112, 302–312. ‎https://doi.org/10.1016/j.ijrmms.2018.10.026‎

‎[78] ‎ Ortlepp, W. D., & Stacey, T. R. (1994). Rockburst mechanisms in tunnels and shafts. Tunnelling and ‎underground space technology, 9(1), 59–65. https://doi.org/10.1016/0886-7798(94)90010-8‎

‎[79] ‎ Cai, M. (2016). Prediction and prevention of rockburst in metal mines – A case study of Sanshandao gold ‎mine. Journal of rock mechanics and geotechnical engineering, 8(2), 204–211. ‎https://doi.org/10.1016/j.jrmge.2015.11.002‎

‎[80] ‎ Meng, F., Zhou, H., Wang, Z., Zhang, L., Kong, L., Li, S., & Zhang, C. (2016). Experimental study on the ‎prediction of rockburst hazards induced by dynamic structural plane shearing in deeply buried hard ‎rock tunnels. International journal of rock mechanics and mining sciences, 86, 210–223. ‎https://doi.org/10.1016/j.ijrmms.2016.04.013‎

‎[81] ‎ Keneti, A., & Sainsbury, B. A. (2018). Review of published rockburst events and their contributing ‎factors. Engineering geology, 246, 361–373. https://doi.org/10.1016/j.enggeo.2018.10.005‎

‎[82] ‎ Singh, S. P. (1989). Classification of mine workings according to their rockburst proneness. Mining ‎science and technology, 8(3), 253–262. https://doi.org/10.1016/S0167-9031(89)90404-0‎

‎[83] ‎ Tang, L. Z., Pan, C. L., & Wang, W. (2002). Surplus energy index for analysing rock burst ‎proneness. Journal of central south university of technology (China), 33(2), 129-132.‎

‎[84] ‎ Singh, S. P. (1988). Burst energy release index. Rock mechanics and rock engineering, 21(2), 149–155. ‎DOI:10.1007/BF01043119‎

‎[85] ‎ Zhang, C. Q., Lu, J. J., Chen, J., Zhou, H., & Yang, F. J. (2017). Discussion on rock burst proneness indexes ‎and their relation. Rock and soil mechanics, 38(5), 1397-1404. DOI:10.16285/j.rsm.2017.05.022‎

‎[86] ‎ Xiao, P., Li, D., & Zhu, Q. (2022). Strain energy release and deep rock failure due to excavation in pre-‎stressed rock. Minerals, 12(4), 488.‎

‎[87] ‎ Tang, L., Yang, C., & Pan, C. (2006). Optimization of microseismic monitoring network for large-scale ‎deep well mining. Chinese journal of rock mechanics and engineering, 25(10), 2036–2042.‎

‎[88] ‎ Steinberg, D. M., & Rabinowitz, N. (2003). Optimal seismic monitoring for event location with ‎application to on site inspection of the comprehensive nuclear test ban treaty. Metrika, 58(1), 31–57. ‎DOI:10.1007/s001840200222‎

‎[89] ‎ Kijko, A. (1977). An algorithm for the optimum distribution of a regional seismic network—I. Pure and ‎applied geophysics, 115(4), 999–1009. DOI:10.1007/BF00881222‎

‎[90] ‎ Kijko, A. (1977). An algorithm for the optimum distribution of a regional seismic network — II. an ‎analysis of the accuracy of location of local earthquakes depending on the number of seismic stations. ‎Pure and applied geophysics, 115(4), 1011–1021. DOI:10.1007/BF00881223‎

‎[91] ‎ Kaiser, P. K., Vasak, P., Suorineni, F. T., & Thibodeau, D. (2005). New dimensions in seismic data ‎interpretation with 3-D virtual reality visualization for burst-prone mines. RaSiM6: proceedings of the ‎sixth international symposium on rockburst and seismicity in mines proceedings, australian centre for ‎geomechanics, perth (pp. 33-45). Australian centre for ‎geomechanics. https://doi.org/10.36487/ACG_repo/574_0.3‎

‎[92] ‎ Vasak, P., Suorineni, F. T., & Verma, A. (2004). Identification of seismically active structures for hazard ‎assessment at Creighton Mine. Report submitted to inco mines technology department.‎

‎[93] ‎ Zhuang, Z., Liu, Z., Cheng, B., & Liao, J. (2014). Fundamental Linear Elastic Fracture Mechanics. In ‎Extended finite element method, academic press, oxford (pp. 11-52), Elsevier Science. ‎https://doi.org/10.1093/oso/9780192846242.003.0002‎

Published

2024-03-15

How to Cite

Microseismic Monitoring System for the Management of Seismic Hazard and Rock Bursting and Distribution of Crack. (2024). International Journal of Researches on Civil Engineering With Artificial Intelligence , 1(1), 73-94. https://ceai.reapress.com/journal/article/view/22

Similar Articles

You may also start an advanced similarity search for this article.